Continuous Uniform Random Variable

My Year 12 Mathematics Methods students are doing continuous random variables at the moment and I thought it would be worthwhile deriving the mean and variance formulas for a uniform continuous random variable.

The probability density function for a uniform random variable is

    \begin{equation*}f(x)= \left \{ {\begin{matrix}\frac{1}{b-a} &  a\le x\le b \\0 & \text {elsewhere}\end{matrix}}\end{equation}

and it looks like

Remember, the mean \mu or expected value E(X) of a continuous random variable is

(1)   \begin{equation*}E(X)=\int xp(x) dx\end{equation*}

and the variance \sigma^2 is

(2)   \begin{equation*}\sigma^2=\int (x-\mu)^2p(x) dx\end{equation*}

We are going to use equations 1 and 2 to find formulae for a uniform continuous random variable.

    \begin{equation*}\mu=\int_a^b x (\frac{1}{b-a}) dx\end{equation}

    \begin{equation*}\mu=\frac{x^2}{2(b-a)}|\begin{matrix}b\\a\end{matrix}\end{equation}

    \begin{equation*}\mu=\frac{b^2}{2(b-a)}-\frac{a^2}{2(b-a)}=\frac{b^2-a^2}{2(b-a)}\end{equation}

Factorise the numerator (using difference of squares)

    \begin{equation*}\mu=\frac{(b-a)(b+a)}{2(b-a)}\end{equation}

Hence,

    \begin{equation*}\mu=\frac{b+a}{2}\end{equation}

Now for the variance

    \begin{equation*}\sigma^2=\int_a^b (x-(\frac{a+b}{2}))^2(\frac{1}{b-a}) dx\end{equation}

    \begin{equation*}\sigma^2=\frac{1}{b-a}(\frac{(x-\frac{a+b}{2})^3}{3})|\begin{matrix}b\\a\end{matrix}\end{equation}

    \begin{equation*}\sigma^2=\frac{1}{b-a}((\frac{(b-\frac{a+b}{2})^3}{3})-(\frac{(a-\frac{a+b}{2})^3}{3}))\end{equation}

    \begin{equation*}\sigma^2=\frac{1}{b-a}(\frac{-a^3}{12}+\frac{b^3}{12}+\frac{a^2b}{4}-\frac{ab^2}{4})\end{equation}

    \begin{equation*}\sigma^2=\frac{1}{b-a}(\frac{-a^3+b^3+3a^2b-3ab^2}{12})\end{equation}

    \begin{equation*}\sigma^2=\frac{1}{b-a}(\frac{b^3-3b^2a+3ba^2-a^3}{12})\end{equation}

From the binomial expansion theorem, we know

    \begin{equation*}b^3-3b^2a+3ba^2-a^3=(b-a)^3\end{equation}

Hence

    \begin{equation*}\sigma^2=\frac{1}{b-a}(\frac{(b-a)^3}{12}\end{equation}

and

    \begin{equation*}\sigma^2=\frac{(b-a)^2}{12}\end{equation}

Leave a Comment

Filed under Binomial Expansion Theorem, Continuous Random Variables, Probability Distributions, Uniform, Year 12 Mathematical Methods

Integrating the Natural Log Function

One of the students asked me the other day how to integrate f(x)=ln(x) – it’s not part of their course, but I thought I would do it here.

We use integration by parts to integrate ln(x)

    \begin{equation*}\int u dv=uv-\int v du\end{equation}

    \begin{equation*}\int ln(x) dx\end{equation}

Let u=ln(x) and dv=1, then du=\frac{1}{x} and v=x

    \begin{equation*}\int ln(x) dx = xln(x)-\int x\times \frac{dx}{x}\end{equation}

    \begin{equation*}\int ln(x) dx = xln(x)-\int 1 dx\end{equation}

    \begin{equation*}\int ln(x) dx = xln(x)-x+c\end{equation}

What about \int 5ln(\sqrt{x}) dx

We can take advantage of log laws and the properties of integration.

    \begin{equation*}\int 5ln(\sqrt{x}) dx=5\int lnx^{\frac{1}{2}} dx=5\int \frac{1}{2}ln(x) dx=\frac{5}{2} \int ln(x) dx\end{equation}

    \begin{equation*}\frac{5}{2} \int ln(x) dx=\frac{5}{2}(xlnx-x)+c\end{equation}

Leave a Comment

Filed under Integration, Integration by Parts

Simultaneous Equation (or is it?)

Solve simultaneously

X+Y+Z=10
XYZ=30
XY+YZ+XZ=31

We could attempt to solve this simultaneously, but I think the algebra would be tricky.

The three equations are related to the roots of a cubic polynomial.

If the general equation of the polynomial is ax^3+bx^2+cx+d, then we know

The sum of the roots

\alpha+\beta+\gamma=\frac{-b}{a}

The product of the roots

\alpha\beta\gamma=\frac{-d}{a}

and

\alpha\beta+\alpha\gamma+\beta\gamma=\frac{c}{a}

So from our three equations we have

(1)   \begin{equation*}X+Y+Z=10=\frac{-b}{a}\end{equation*}

(2)   \begin{equation*}XYZ=30=\frac{-d}{a}\end{equation*}

(3)   \begin{equation*}XY+YZ+XZ=31=\frac{c}{a}\end{equation*}

Let a=1, then b=-10, c=31, and d=-30

Our cubic is t^3-10t^2+31t-30 and we can try to solve it.

The roots will be factors of -30, so \pm 1, \pm 2, \pm 3, \pm 5, \pm 6, \pm 10, \pm 15, \pm 30

Try t=2

    \begin{equation*}(2)^3-10(2)^2+31(2)-30=0\end{equation}

Hence t=2 is a root.

Use synthetic division to find the quadratic factor

21-1031-30
2-1630
1-8150

The quadratic factor is x^2-8x+15, which factorises to (x-3)(x-5)

Hence the solutions are X=2, Y=3, and Z=5

We could assume the solutions are natural numbers, then we can look at factors of 30.

Factors of ThirtyX+Y+ZXY+YZ+XZ
1, 1, 301+1+30=321+30+30=61
1, 2, 151+2+15=182+15+30=47
1, 5, 61+5+6=125+6+30=41
2, 3, 52+3+5=106+10+15=31

Hence the solutions are X=2, Y=3, and Z=5

But with this approach we might not be able to find the solutions.

Leave a Comment

Filed under Algebra, Cubics, Factorising, Polynomials, Quadratic, Simultaneous Equations, Solving, Sum and Product of Roots

Age Question (Year 8 equation solving)

Eight years ago my father was three times as old as I shall be in five years time. When I was born he was 41 years old. How old am I now?

I always find these age questions a bit weird – a bit of a riddle, and contrived (just so we can solve some equations)

Let x be my age now, and y be my fathers age now.

(1)   \begin{equation*}y=x+41\end{equation*}

Because my father was 41 when I was born.

(2)   \begin{equation*}y-8=3(x+5)\end{equation*}

y-8 for 8 years ago, and 3(x+5) for three times my age in 5 years.

Solve the equations simultaneously. Substitute y=x+41 into equation 2

    \begin{equation*}x+41-8=3(x+5)\end{equation}

    \begin{equation*}x-33=3x+15\end{equation}

    \begin{equation*}18=2x\end{equation}

    \begin{equation*}x=9\end{equation}

Hence my current age is 9.

Leave a Comment

Filed under Algebra, Simultaneous Equations, Solving Equations, Year 8 Mathematics

Synthetic Division (for factorising and/or solving polynomials)

I use synthetic division to factorise polynomials with a degree greater than 2. For example, f(x)=x^3+2x^2-5x-6

It works best with monic polynomials but can be adapted to non-monic ones (see example below).

The only problem is that you need to find a root to start.

Try the factors of -6 i.e. (-1, 1, 2, -2, 3, -3, 6, -6)

f(-1)=(-1)^3+2(-1)^2-5(-1)-6=0

Hence, x=-1 is a root and (x+1) is a factor of the polynomial.

Set up as follows

Bring the first number down

Multiply by the root and place under the second co-efficient

Add down

Repeat the process

The numbers at the bottom (1, 1, -6) are the coefficients of the polynomial factor.

We now know x^3+2x^2-5x-6=(x+1)(x^2+x-6).

We can factorise the quadratic in the usual way.

x^2+x-6=(x+3)(x-2)

Hence x^3+2x^2-5x-6=(x+1)(x+3)(x-2).

Let’s try a non-monic example

Factorise 6x^4+39x^3+91x^2+89x+30

I know -2 is a root. Otherwise I would try the factors of 30.

Use synthetic division

Because this was non-monic we need to divide our new co-efficients (6, 27, 37, 15) by 6 (the co-efficient of the x^4 term)

x^3+\frac{9}{2}x^2+\frac{37}{6}+\frac{5}{2}

We now need to go again. I know that \frac{-3}{2} is a root and (2x+3) is a factor.

Our quadratic factor is x^2+3x+5/3, which is 3x^2+9x+5.

The quadratic factor doesn’t have integer factors so,

6x^4+39x^3+91x^2+89x+30=(x+2)(2x+3)(3x^2+9x+5)

I think this is much quicker than polynomial long division.

Leave a Comment

Filed under Algebra, Factorising, Factorising, Fractions, Polynomials, Quadratic, Simplifying fractions, Solving Equations

Trigonometry Question

I don’t know where I found this question, but it does require algebra and problem solving (as well as right trig and Pythagoras)

From a point A, a lighthouse is on a bearing of 026^\circT and the top of the light house is at an angle of elevation of 20.25^\circ. From a point B, the lighthouse is on a bearing of 296^\cricT and the top of the lighthouse is at angle of elevation of 10.2^\circ. If A and B are 500 metres apart, find the height of the lighthouse.

Let’s draw a diagram.

Let the height of the lighthouse be h

We can find the angle between A, the lighthouse, and B by using the base triangle

The red line from L is parallel to the two north lines. Hence \theta=26^\circ+64^\circ=90^\circ (Alternate angles in parallel lines are congruent)

It’s a right triangle so we know

(1)   \begin{equation*}500^2=(AL)^2+(BL)^2\end{equation*}

We are going to use the other two triangles to find AL and BL


tan(20.25)=\frac{h}{AL}
AL=\frac{h}{tan(20.25)}

tan(10.2)=\frac{h}{BL}
BL=\frac{h}{tan(10.2)}

Substitute AL and BL into equation 1

    \begin{equation*}500^2=(\frac{h}{tan(20.25)})^2+(\frac{h}{tan(10.2)})^2\end{equation}

Solve for h.

    \begin{equation*}500^2=7.35h^2+30.89h^2=38.24h^2\end{equation}

    \begin{equation*}h^2=6538.3\end{equation}

    \begin{equation*}h=80.9m\end{equation}

Leave a Comment

Filed under Algebra, Bearings, Pythagoras, Right Trigonometry, Solving Equations, Trigonometry

Converting recurring (non-terminating) decimals to fractions

The easiest approach is to jump right in with some examples.

Example 1

Convert 0.\overline{5} to a fraction.

Let x=0.\overline{5}

(1)   \begin{equation*}x=0.\overline{5}\end{equation*}

(2)   \begin{equation*}10x=5.\overline{5}\end{equation*}

Subtract equation 1 from equation 2

    \begin{equation*}9x=5\end{equation}

Hence x=\frac{5}{9} so 0.\overline{5}=\frac{5}{9}

Example 2

Convert 0.\overline{12} to a fraction.

Let x=0.\overline{12}

(3)   \begin{equation*}x=0.\overline{12}\end{equation*}

(4)   \begin{equation*}100x=12.\overline{12}\end{equation*}

Subtract equation 3 from equation 4.

    \begin{equation*}99x=12\end{equation}

    \begin{equation*}x=\frac{12}{99}=\frac{4}{33}\end{equation}

Example 3

Convert 0.1\overline{23} to a fraction

Let x=0.1\overline{23}

(5)   \begin{equation*}x=0.1\overline{23}\end{equation*}

(6)   \begin{equation*}10x=1.\overline{23}\end{equation*}

(7)   \begin{equation*}1000x=123.\overline{23}\end{equation*}

Subtract equation 6 from equation 7

    \begin{equation*}990x=122\end{equation}

    \begin{equation*}x=\frac{122}{990}=\frac{61}{495}\end{equation}

Our aim is to manipulate the recurring decimal to create two numbers each which have only the repeated digits after the decimal point.

One more example.

Example 4

Convert 3.4\overline{56} to a fraction

Let x=3.4\overline{56}

If I multiply by 10, then I will have 34.\overline{56} – only repeated digits after the decimal point.

If I multiply by 1000, then I will have 3456.\overline{56}– only repeated digits after the decimal point.

So I get,

    \begin{equation*}990x=3422\end{equation}

    \begin{equation*}x=\frac{3422}{990}=3\frac{226}{495}\end{equation}

You can also use your Casio classpad to do the conversion. Although I think it is easier just to do it yourself.

Let’s think about example 4,

3.4\overline{56}=3.4+\frac{56}{1000}+\frac{56}{100000}+\frac{56}{10000000}+...

Which is

3.4+\frac{56}{1000\times 100^0}+\frac{56}{1000\times100^1}+\frac{56}{1000\times 100^2}...

3.4+\Sigma_{x=0}^\infty(\frac{56}{1000\times 100^x})

Leave a Comment

Filed under Arithmetic, Decimals, Fractions, Year 11 Specialist Mathematics

Square Root Puzzle

Is it possible to find three numbers, a, b, c, none of which is zero or a perfect square, such that
\sqrt{a}+\sqrt{b}=\sqrt{c}

Can You Solve These – David Wells

As a, b and c can’t be perfect squares, let a=d\times e^2, b=f\times g^2 and c=h\times k^2 where d, e, f, g, h and k are real numbers.

Hence \sqrt{a}=e\sqrt{d}, \sqrt{b}=g\sqrt{f} and \sqrt{c}=k\sqrt{h}.

    \begin{equation*}\sqrt{a}+\sqrt{b}=\sqrt{c}\end{equation}

    \begin{equation*}e\sqrt{d}+g\sqrt{f}=k\sqrt{h}\end{equation}

For the above equation to be possible d, f and h must simplify to the same surd. Because we are looking for one set of numbers, let d=f=h.

    \begin{equation*}e\sqrt{d}+g\sqrt{d}=k\sqrt{d}\end{equation}

    \begin{equation*}e+g=k\end{equation}

Let’s think of some numbers that might work…

1+2=3 or 2+3=5, etc.

Let’s try e=1, g=2, and k=3

We now have a=d, b=4d, and c=9d

As a can’t be a square number, d can’t be a square number.

Try d=2

    \begin{equation*}\sqrt{2}+\sqrt{8}=\sqrt{18}\end{equation}

LHS=\sqrt{2}+2\sqrt{2}

LHS=3\sqrt{2}

LHS=\sqrt{9\times 2}

LHS=\sqrt{18}

LHS=RHS

One set of possible numbers are 2, 8,and 18.

Leave a Comment

Filed under Algebra, Interesting Mathematics, Puzzles

Closest Approach (Shortest Distance) e-activity (Casio Classpad)

At 1pm, object H travelling with constant velocity \begin{pmatrix}200\\10\end{pmatrix}km/h is sighted at the point with position vector \begin{pmatrix}-90\\-100\end{pmatrix}km. At 2pm object J travelling with constant velocity \begin{pmatrix}100\\-100\end{pmatrix}km/h is sighted at the point with position vector \begin{pmatrix}20\\-120\end{pmatrix}km. Determine the minimum distance between H and J and when this occurs.

OT Lee Mathematics Specialist Year 11 Unit 1 and 2 Exercise 10.1 Question 6.

(1)   \begin{equation*}\mathbf{r_H}=\begin{pmatrix}-90\\-100\end{pmatrix}+t\begin{pmatrix}200\\10\end{pmatrix}\end{equation*}

(2)   \begin{equation*}\mathbf{r_J}=\begin{pmatrix}-80\\-20\end{pmatrix}+t\begin{pmatrix}100\\-100\end{pmatrix}\end{equation*}

\begin{pmatrix}-80\\-20\end{pmatrix} is the position vector of J at 1pm.

Find the relative displacement of H to J

    \begin{equation*}\mathbf{_H}\mathbf{r_J}=\mathbf{r_H}-\mathbf{r_J}\end{equation}

    \begin{equation*}\mathbf{_H}\mathbf{r_J}=\begin{pmatrix}-90\\-100\end{pmatrix}+t\begin{pmatrix}200\\10\end{pmatrix}-(\begin{pmatrix}-80\\-20\end{pmatrix}+t\begin{pmatrix}100\\-100\end{pmatrix})\end{equation}

    \begin{equation*}\mathbf{_H}\mathbf{r_J}=\begin{pmatrix}-10\\-80\end{pmatrix}+t\begin{pmatrix}100\\110\end{pmatrix}\end{equation}

Find the relative velocity of H to J

    \begin{equation*}\mathbf{_H}\mathbf{v_J}=\begin{pmatrix}100\\110\end{pmatrix}\end{equation}

The relative displacement is perpendicular to the relative velocity at the closest approach.

That is

(3)   \begin{equation*}\mathbf{_H}\mathbf{r_J}\cdot\mathbf{_H}\mathbf{v_J}=0\end{equation*}

    \begin{equation*}(\begin{pmatrix}-10\\-80\end{pmatrix}+t\begin{pmatrix}100\\110\end{pmatrix})\cdot(\begin{pmatrix}100\\110\end{pmatrix})=0\end{equation}

    \begin{equation*}(-10+100t)(100)+(-80+110t)(110)=0\end{equation}

    \begin{equation*}-1000+10 000t-8800+12100t=0\end{equation}

    \begin{equation*}22100t=9800\end{equation}

    \begin{equation*}t=\frac{98}{221}\end{equation}

Substitute t=\frac{98}{221} into the relative displacement and find the magnitude.

    \begin{equation*}\mathbf{_H}\mathbf{r_J}=\begin{pmatrix}-10\\-80\end{pmatrix}+\frac{98}{221}\begin{pmatrix}100\\110\end{pmatrix}\end{equation}

    \begin{equation*}\mathbf{_H}\mathbf{r_J}=\begin{pmatrix}34\frac{76}{221}\\-31\frac{49}{221}\end{pmatrix}\end{equation}

    \begin{equation*}\|\begin{pmatrix}34\frac{76}{221}\\-31\frac{49}{221}\end{pmatrix}\|=46.4\end{equation}

The closest objects H and J get to each other is 46.4km at 1:27pm.

I have made an e-activity for this.

Leave a Comment

Filed under Classpad Skills, Closest Approach, Vectors, Year 11 Mathematical Methods

A Counting Question

How many three digit numbers can you form from the digits 1, 2, 3, 4 and 5 if

(a) the digits must occur in increasing order?

(b) adjacent digits differ by 2?

Cambridge Year 11 Specialist Mathematics Skill Sheet 1A

(a) There are 5\times 4\times 3=60 permutations of three digits from the five digits, but how many of those are in the right order?

Each set of 3 digits has 6 arrangements (3\times 2\times 1=6).

For example, if the set is {1, 2, 3}, then the possible arrangements are:

123, 132, 213, 231, 312, and 321.

Only one of those arrangements is in numerical order.

Hence what we want is \begin{pmatrix}5\\3\end{pmatrix}=10

(b) I think this one is more about creating a list. I shall start with 1

135, 531, 131, 242, 353, 424, 535, 315

There are 8 possibilities.

Leave a Comment

Filed under Counting Techniques, Year 11 Specialist Mathematics