We are going to use De Moivre’s theorem to prove trigonometric identities.
Remember, De Moivre’s Theorem
If
, then ![]()
Or a shorter version
, then ![]()
Now, let
, find ![]()
![]()
Remember
and ![]()
![]()
![]()
It is the same for ![]()
![]()
![]()
| Prove |
We can do something similar with sine.
![]()
![]()
![]()
![]()
![]()
Hence ![]()
| Prove |
Let’s find an identity for ![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
And
?
![]()
![]()
![]()
![]()
![]()
![]()
![]()