Tag Archives: geometry puzzle

Geometry Problem

The blue shaded area is the area of triangles APO and AQO subtract the sector POQ.

We can use Heron’s law to find the area of the triangle \Delta{ABC}

    \begin{equation*}A=\sqrt{s(s-a)(s-b)(s-c)}\end{equation}

where s=\frac{a+b+c}{2}

    \begin{equation*}A=\sqrt{20(20-16)(20-10)(20-14)}=40\sqrt{3}\end{equation}

We also know the area of triangle \Delta{ABC}=sr where r is the radius of the inscribed circle.

Hence, 40\sqrt{3}=20r and r=2\sqrt{3}

We know AP=AQ, CQ=CR, and BP=BR – tangents to a circle are congruent.

    \begin{equation*}14-x=6+x\end{equation}

(1)   \begin{equation*}8=2x\end{equation*}

(2)   \begin{equation*}x=4\end{equation*}

Area \Delta{AQO}=\frac{1}{2}10\times 2\sqrt{3}=10\sqrt{3}

Area \Delta{APO}=Area \Delta{AQO}

    \begin{equation*}tan(\theta)=\frac{10}{2\sqrt{3}}\end{equation}

    \begin{equation*}\theta=70.9^{\circ}\end{equation}

Area of sector OPQ=\frac{2\times70.9}{360}\pi (2\sqrt{3})^2=14.8

Blue area = 20\sqrt{3}-14.8=19.8cm^2

Leave a Comment

Filed under Algebra, Area, Finding an angle, Finding an area, Geometry, Heron's Law, Interesting Mathematics, Puzzles, Radius and Semi-Perimeter, Right Trigonometry, Solving Equations, Trigonometry