Tag Archives: geometry puzzle

Geometry Puzzle (finding a fraction of an area)

Geometry Puzzles in Felt Tip: A Compilation of puzzles from 2018 – Catriona Shearer

Band 1 and 3 have the same area.

We want to find the area of the shaded segment.

As the dots are equally spaced, the sector’s angle is \frac{\pi}{2} = (\frac{2\pi}{12}\times 3)

Remember the area of a segment is A=\frac{1}{2}r^2(\theta-sin(\theta)) where the angle measurement is in radians.

(1)   \begin{equation*}A=\frac{1}{2}r^2(\frac{\pi}{2}-sin(\frac{\pi}{2}))=\frac{1}{2}r^2(\frac{\pi}{2}-1))=\frac{\pi r^2}{4}-\frac{r^2}{2}\end{equation*}

We want to find the area of the shaded segment.

As the dots are equally spaced, the sector’s angle is \frac{2\pi}{12} = (\frac{\pi}{6})

(2)   \begin{equation*}A=\frac{1}{2}r^2(\frac{\pi}{6}-sin(\frac{\pi}{6}))=\frac{\pi r^2}{12}-\frac{r^2}{4}\end{equation*}

The area of band 1 is equation 1 -equation 2.

(3)   \begin{equation*}\frac{\pi r^2}{4}-\frac{r^2}{2}-(\frac{\pi r^2}{12}-\frac{r^2}{4})=\frac{\pi r^2}{6}-\frac{r^2}{4}\end{equation*}

Band 2 consists of two congruent triangles and two congruent sectors.

    \begin{equation*}\theta=\frac{2\pi}{12}\times 5=\frac{5\pi}{6}, \alpha=\frac{\pi}{6}\end{equation}

(4)   \begin{equation*}A=2(\frac{1}{2}r^2sin(\frac{5\pi}{6}))+2(\frac{1}{2}r^2\frac{\pi}{6})=\frac{r^2}{2}+\frac{r^2 \pi}{6}\end{equation*}

Hence the shaded area is 2(\frac{\pi r^2}{6}-\frac{r^2}{4})+\frac{r^2}{2}+\frac{r^2 \pi}{6}=\frac{\pi r^2}{2}

The area of the circle is \pi r^2

Hence the fraction of the shaded area is =\frac{\frac{\pi r^2}{2}}{\pi r^2}=\frac{1}{2}

Leave a Comment

Filed under Area, Area of Triangles (Sine), Finding an area, Geometry, Puzzles, Simplifying fractions

Geometry Problem

The blue shaded area is the area of triangles APO and AQO subtract the sector POQ.

We can use Heron’s law to find the area of the triangle \Delta{ABC}

    \begin{equation*}A=\sqrt{s(s-a)(s-b)(s-c)}\end{equation}

where s=\frac{a+b+c}{2}

    \begin{equation*}A=\sqrt{20(20-16)(20-10)(20-14)}=40\sqrt{3}\end{equation}

We also know the area of triangle \Delta{ABC}=sr where r is the radius of the inscribed circle.

Hence, 40\sqrt{3}=20r and r=2\sqrt{3}

We know AP=AQ, CQ=CR, and BP=BR – tangents to a circle are congruent.

    \begin{equation*}14-x=6+x\end{equation}

(1)   \begin{equation*}8=2x\end{equation*}

(2)   \begin{equation*}x=4\end{equation*}

Area \Delta{AQO}=\frac{1}{2}10\times 2\sqrt{3}=10\sqrt{3}

Area \Delta{APO}=Area \Delta{AQO}

    \begin{equation*}tan(\theta)=\frac{10}{2\sqrt{3}}\end{equation}

    \begin{equation*}\theta=70.9^{\circ}\end{equation}

Area of sector OPQ=\frac{2\times70.9}{360}\pi (2\sqrt{3})^2=14.8

Blue area = 20\sqrt{3}-14.8=19.8cm^2

Leave a Comment

Filed under Algebra, Area, Finding an angle, Finding an area, Geometry, Heron's Law, Interesting Mathematics, Puzzles, Radius and Semi-Perimeter, Right Trigonometry, Solving Equations, Trigonometry