Tag Archives: counting techniques

A Counting Question

How many three digit numbers can you form from the digits 1, 2, 3, 4 and 5 if

(a) the digits must occur in increasing order?

(b) adjacent digits differ by 2?

Cambridge Year 11 Specialist Mathematics Skill Sheet 1A

(a) There are 5\times 4\times 3=60 permutations of three digits from the five digits, but how many of those are in the right order?

Each set of 3 digits has 6 arrangements (3\times 2\times 1=6).

For example, if the set is {1, 2, 3}, then the possible arrangements are:

123, 132, 213, 231, 312, and 321.

Only one of those arrangements is in numerical order.

Hence what we want is \begin{pmatrix}5\\3\end{pmatrix}=10

(b) I think this one is more about creating a list. I shall start with 1

135, 531, 131, 242, 353, 424, 535, 315

There are 8 possibilities.

Leave a Comment

Filed under Counting Techniques, Year 11 Specialist Mathematics

Counting Techniques

Four teachers decide to swap desks at work. How many ways can this be done if no teacher sits at their previous desk?
Mathematics Specialist Units 1&2 Cambridge

I like this question as it seems easy until you start thinking about it. I think the best approach is a tree diagram.

If we think of the four teachers as A, B, C and D. Then A can no longer sit in A, so the options are B, C and D for the first desk.

For the second desk, If B is in the first desk, then A, C or D could be in the second. If C is in the first desk, then A or D could be in the second (B can’t be in the same desk). If D is in the first desk, then A or C can be in the second desk.

And so on, leaving 9 possibilities

BADC
BCDA
BDAC
CADB
CDAB
CDBA
DABC
DCAB
DCBA

1 Comment

Filed under Counting Techniques, Tree Diagram, Year 11 Specialist Mathematics