Tag Archives: circle theorems

Geometry Circle Question

In the diagram below, A, B, C and D lie on the circle with centre O. If \angle{DBC} = 41^{\circ} and \angle{ACD} = 53^{\circ}, determine with reasoning \angle{BAC} and \angle{AOB}

We know OA=OB=OD – radii of the circle.

Which means, \Delta{AOB} is isosceles and \angle{OAB}=\angle{OBA} – equal angles isosceles triangle.

\angle{AOD}=2\angle{ACD} – angle at the centre twice the angle at the circumference.

\angle{AOB}=106^{\circ}

This means \angle{AOB}=74^{\circ} – angles on a straight line are supplementary

\angle{OAD}=\angle{ODA}=37^{\circ} – equal angles isosceles triangle and the angle sum of a triangle.

\angle{DBA}=\angle{DCA}=53^{\circ} – angle at the circumference subtended by the same arc are congruent.

\angle{CAD}=\angle{CBD}=41^{\circ} – angles at the circumference subtended by the same arc are congruent.

\angle{OAB}=53^{\circ} – equal angle isosceles triangle

Hence \angle{BAC}=12^{\circ}

Leave a Comment

Filed under Circle Theorems, Finding an angle, Geometry, Year 11 Specialist Mathematics

Circle Geometry Problem

In the diagram, points A, B, C, D and Q lie on a circle centre O, radius 6 cm and diameter BQ, \angle{ABQ}=50^\circ, AB is parallel to DO and point P lies on diameter BQ such that OP=DP=4cm.

(a) Find \angle{BCD}

(b) Determine the length of PC.

\angle{BOD}=180^\circ-50^\circ=130^\circ (Co-interior angles in parallel lines are supplementary.)

\angle{BCD}=\frac{1}{2}\times 130=65^\circ (Angles subtended by the same arc. The angle at the centre is twice the angle at the circumference.)

\angle{BCD}=65^\circ.

Let PC=x

From the intersecting chord theorem

    \begin{equation*}4\times x=2\times 10\end{equation}

    \begin{equation*}4x=20\end{equation}

    \begin{equation*}x=5\end{equation}

PC=5cm


A chord AB of a circle O is extended to C. The straight line bisecting \angle{OAB} meets the circle at E. Let \angle{BAE}=x. Prove that EB bisects \angle{OBC}.

\angle{BAO}=2x (AE bisects \angle {BAO})

\Delta AOB is isosceles (AO=B0 radii of the circle)

\angle{ABO}=2x (Equal angles in isosceles triangle)

Therefore \angle {AOB}=180^\circ-4x (angle sum of a triangle)

\angle {BEA}=90^\circ-2x (angle at the circumference is half angle at the centre)

\angle{ABE}=180^\circ-x-(90^\circ-2x)=90^\circ+x (angle sum of a triangle)

\angle{CBE}=180^\circ-(90^\circ+x)=90^\circ-x (angles on a straight line)

\angle{OBE}=90^\circ+x-2x=90^\circ-x

\angle{OBE}=\angle{CBE}

Hence, BE bisects \angle{OBC}

Leave a Comment

Filed under Circle Theorems, Geometry, Uncategorized, Year 11 Specialist Mathematics