Category Archives: Identities

Trigonometric Limits

\lim\limits_{x \to 0}\frac{sin(x)}{x}=?

Unit Circle

Remember cos(x)=\frac{OA}{OB}=\frac{OA}{1}, hence OA=cos(x) and the co-ordinate of A is (cos(x), 0).

sin(x)=\frac{AB}{OB}=\frac{AB}{1}, hence AB=sin(x) and the co-ordinate of B is (cos(x), sin(x))

And from the definition of tan(x) we know D is the point (1, tan(x))

Consider the areas of triangle OAB, sector OBC, and triangle OCD.

We know from inspection of the above diagram that

Area OAB< Area OCB<Area OCD

Which means,

\frac{1}{2}b_1 h_1<\frac{1}{2}r^2x<\frac{1}{2}b_2 h_2

We can ignore all of the halves.

cos(x)sin(x)<x<(1)tan(x)

Remember tan(x)=\frac{sin(x)}{cos(x)}

cos(x)sin(x)<x<\frac{sin(x)}{cos(x)}

Divide everything by sin(x) (as we are in the first quadrant we know sin(x)>0, so we don’t need to worry about the inequality)

cos(x)<\frac{x}{sin(x)}<\frac{1}{cos(x)}

Invert everything and change the direction of the inequalities)

\frac{1}{cos(x)}>\frac{sin(x)}{x}>cos(x)

I am going to rewrite it as follows

cos(x)<\frac{sin(x)}{x}<\frac{1}{cos(x)}

because I like to use less thans rather than greater thans.

Now what happens as x tends to 0?

cos(0)=1

1<\frac{sin(x)}{x}<\frac{1}{1}

Hence by the squeeze theorem \lim\limits_{x \to 0}\frac{sin(x)}{x}=1

Now we know this limit, we are going to use it to find \lim\limits_{x \to 0}\frac{1-cos(x)}{x}

Multiply by \frac{1+cos(x)}{1+cos(x)}

\lim\limits_{x \to 0}\frac{1-cos(x)}{x}\times \frac{1+cos(x)}{1+cos(x)}

\lim\limits_{x \to 0}\frac{1-cos^2(x)}{x(cos(x)+1)}

\lim\limits_{x \to 0}\frac{sin^2(x)}{x(cos(x)+1)}

\lim\limits_{x \to 0}\frac{sin(x)}{x}\times sin(x)(cos(x)+1)}

\lim\limits_{x \to 0}\frac{sin(x)}{x}\times \lim\limits_{x \to 0}sin(x)(cos(x)+1)

If we evaluate the limits,

(1)(sin(0)(cos(0)+1)=1\times 0 \times 2=0

Hence, \lim\limits_{x \to 0}\frac{1-cos(x)}{x}=0

In the next post we are going to use these limits to differentiate sine and cosine functions.

1 Comment

Filed under Area, Area of Triangles (Sine), Calculus, Identities, Trigonometry, Year 12 Mathematical Methods

Interesting Sum

S=\sum_{n=1}^\infty (tan^{-1}(\frac{2}{n^2})), find S.

I came across this sum in An Imaginary Tale by Nahin and I was fascinated.

Let tan(\alpha)=n+1 and tan(\beta)=n-1.

Remember
tan(\alpha-\beta)=\frac{tan(\alpha)-tan(\beta)}{1+tan(\alpha)tan(\beta)}
Hence,
tan(\alpha-\beta)=\frac{(n+1)-(n-1)}{1+(n+1)(n-1)}
tan(\alpha-\beta)=\frac{2}{1+n^2-1}
tan(\alpha-\beta)=\frac{2}{n^2}
Therefore,
\alpha-\beta=tan^{-1}(\frac{2}{n^2})
and
\alpha=tan^{-1}(n+1) and \beta=tan^{-1}(n-1)

tan^{-1}(n+1)-tan^{-1}(n-1)=tan^{-1}(\frac{2}{n^2})

Which means,

    \begin{equation*}S=\sum_{n=1}^\infty(tan^{-1}(n+1)-tan^{-1}(n-1))\end{equation}

Let’s try a few partial sums

S_4=tan^{-1}(2)-tan^{-1}(0)+tan^{-1}(3)-tan^{-1}(1)+tan^{-1}(4)-tan^{-1}(2)+tan^{-1}(5)-tan^{-1}(3)

S_4=-tan^{-1}(0)+-tan^{-1}(1)+tan^{-1}(4)+tan^{-1}(5)

S_6=tan^{-1}(2)-tan^{-1}(0)+tan^{-1}(3)-tan^{-1}(1)+tan^{-1}(4)-tan^{-1}(2)+tan^{-1}(5)-tan^{-1}(3)+tan^{-1}(6)-tan^{-1}(4)+tan^{-1}(7)-tan^{-1}(5)

S_6=-tan^{-1}(0)+-tan^{-1}(1)+tan^{-1}(6)+tan^{-1}(7)

Hence, S_N=-tan^{-1}(0)+-tan^{-1}(1)+tan^{-1}(N)+tan^{-1}(N+1)

S_N=-\frac{\pi}{4}-0+tan^{-1}(N)+tan^{-1}(N+1)

What happens as N\rightarrow \infty ?

\lim\limits_{N\to \infty}\ S_N=-\frac{\pi}{4}+\frac{\pi}{2}+\frac{\pi}{2}=\frac{3\pi}{4}

Because we know tan(\frac{\pi}{2}) is undefined.

1 Comment

Filed under Identities, Interesting Mathematics, Puzzles, Sequences, Trigonometry

Infinite Product Expansion of cos (x)

Remember

(1)   \begin{equation*}cos(x)=1-\frac{1}{2!}x^2+\frac{1}{4!}x^4-\frac{1}{6!}x^6+...\end{equation*}

We know that cos(x)=0 for odd integer multiples of \frac{\pi}{2}, i.e. \frac{\pi}{2}, \frac{3\pi}{2}, ..., which is \frac{(2n-1)\pi}{2} for n\neq 0

Hence,

    \begin{equation*}0=1-\frac{1}{2!}x^2+\frac{1}{4!}x^4-\frac{1}{6!}x^6+...\end{equation}

for x=\frac{(2n-1)\pi}{2}, n>0

We can factorise our cos(x) expansion

    \begin{equation*}(1-\frac{x^2}{r_1})(1-\frac{x^2}{r_2})...\end{equation}

We know r_1=\frac{\pi}{2}, r_2=\frac{3\pi}{2}, ...

    \begin{equation*}cos(x)=(1-\frac{x^2}{(\frac{\pi}{2})^2})(1-\frac{x^2}{(\frac{3\pi}{2})^2})...(1-\frac{x^2}{(\frac{(2n-1)\pi}{2})^2})\end{equation}

    \begin{equation*}cos(x)=\Pi_{n=1}^{\infty}(1-\frac{x^2}{(\frac{(2n-1)\pi}{2})^2})\end{equation}

    \begin{equation*}cos(x)=\Pi_{n=1}^{\infty}(1-\frac{4x^2}{(2n-1)^2\pi^2})\end{equation}

1 Comment

Filed under Factorising, Identities, Infinite Product Expansion, Interesting Mathematics, Polynomials, Trigonometry

Using De Moivre’s Theorem for Trigonometric Identities

We are going to use De Moivre’s theorem to prove trigonometric identities.

Remember, De Moivre’s Theorem

If z=r(cos(\theta)+isin(\theta)), then z^n=r^n(cos(n\theta)+isin(n\theta))

Or a shorter version z=rcis(\theta), then z^n=r^ncis(n\theta)

Now, let z=cos(\theta)+isin(\theta), find z+\frac{1}{z}

z+z^{-1}=cos(\theta)+isin(\theta)+cos(-\theta)+isin(-\theta)

Remember cos(\theta)=cos(\theta) and sin(-\theta)=-sin(\theta)

z+\frac{1}{z}=cos(\theta)+isin(\theta)+cos(\theta)-isin(\theta)

z+\frac{1}{z}=2cos(\theta)

It is the same for z^n+\frac{1}{z^n}

z^n+z^{-n}=cos(n\theta)+isin(n\theta)+cos(-n\theta)+isin(-n\theta)

z^n+\frac{1}{z^n}=2cos(n\theta)

Prove cos(2\theta)=2cos^2(\theta)-1
LHS=\frac{1}{2}(z^2+\frac{1}{z^2})
LHS=\frac{1}{2}(z^2+\frac{1}{z^2})+z\times\frac{1}{z}-z\times\frac{1}{z}
LHS=\frac{1}{2}(z^2+2z\times\frac{1}{z}+\frac{1}{z^2})-z\times\frac{1}{z}
LHS=\frac{1}{2}(z+\frac{1}{z})^2-1
LHS=\frac{1}{2}(2cos(\theta))^2-1
LHS=\frac{1}{2}(4cos^2(\theta))-1
LHS=2cos^2(\theta)-1
LHS=RHS

We can do something similar with sine.

z-\frac{1}{z}=cos(\theta)+isin(\theta)-(cos(-\theta)+isin(-\theta))

z-\frac{1}{z}=cos(\theta)+isin(\theta)-(cos(-\theta)+isin(-\theta))

z-\frac{1}{z}=cos(\theta)+isin(\theta)-(cos(\theta)-isin(\theta))

z-\frac{1}{z}=cos(\theta)+isin(\theta)-cos(\theta)+isin(\theta)

z-\frac{1}{z}=2isin(\theta)

Hence z^n-\frac{1}{z^n}=2isin(n\theta)

Prove sin(2\theta)=2sin(\theta)cos(\theta)
LHS=sin(2\theta)
LHS=\frac{1}{2i}(z^2-\frac{1}{z^2})
LHS=\frac{1}{2i}(z-\frac{1}{z})(z+\frac{1}{z})
LHS=\frac{1}{2i}(2isin(\theta)(2cos(\theta))
LHS=sin(\theta)2cos(\theta)
LHS=2sin(\theta)cos(\theta)
LHS=RHS

Let’s find an identity for cos(3\theta)

cos(3\theta)=\frac{1}{2}(z^3+\frac{1}{z^3})

=\frac{1}{2}(z^3+\frac{1}{z^3}+3z^2\times\frac{1}{z}+3z\times\frac{1}{z^2}-3z^2\times\frac{1}{z}-3z\times\frac{1}{z^2})

=\frac{1}{2}((z+\frac{1}{z})^3-3z-\frac{3}{z})

=\frac{1}{2}((z+\frac{1}{z})^3-3(z+\frac{1}{z}))

=\frac{1}{2}(2cos(\theta))^3-3(2cos(\theta)))

=\frac{1}{2}(8cos^3(\theta)-6cos(\theta))

=4cos^3(\theta)-3cos(\theta)

\therefore cos(3\theta)=4cos^3(\theta)-3cos(\theta)

And sin(3\theta)?

sin(3\theta)=\frac{1}{2i}(z^3-\frac{1}{z^3})

=\frac{1}{2i}(z^3-\frac{1}{z^3}-3z^2\times\frac{1}{z}+3z\times\frac{1}{z^2}+3z^2\times\frac{1}{z}-3z\times\frac{1}{z^2}

=\frac{1}{2i}((z-\frac{1}{z})^3+3z-\frac{3}{z})

=\frac{1}{2i}(2isin(\theta))^3+3(z-\frac{1}{z}))

=\frac{1}{2i}(-8isin^3(\theta)+6isin(\theta))

=-4sin^3(\theta)+3sin(\theta)

\therefore sin(3\theta)=3sin(\theta)-4sin^3(\theta)

Leave a Comment

Filed under Complex Numbers, Identities, Trig Identities, Trigonometry