Category Archives: Identities

Trigonometric Exact Value

Using an appropriate double angle identity, find the exact value of
cos(\frac{\pi}{12})

The double angle identity for sine is

(1)   \begin{equation*}cos(2A)=cos^2A-sin^2A=2cos^2A-1=1-2sin^2A\end{equation*}

That means \frac{\pi}{12} is either 2A or A.

It must be A as 2\times\frac{\pi}{12}=\frac{\pi}{6} as there are exact values for \frac{\pi}{6}

Hence,

    \begin{equation*}cos{\frac{\pi}{6}}=2cos^2{\frac{\pi}{12}}-1\end{equation}

    \begin{equation*}\frac{\sqrt{3}}{2}=2cos^2{\frac{\pi}{12}}-1\end{equation}

    \begin{equation*}\frac{\sqrt{3}}{2}+1=2cos^2{\frac{\pi}{12}}\end{equation}

    \begin{equation*}\frac{\frac{\sqrt{3}}{2}+1}{2}=cos^2{\frac{\pi}{12}}\end{equation}

    \begin{equation*}\frac{\sqrt{3}+2}{4}=cos^2{\frac{\pi}{12}}\end{equation}

    \begin{equation*}\sqrt{\frac{\sqrt{3}+2}{4}}=cos{\frac{\pi}{12}}\end{equation}

As \frac{\pi}{12} is in the first quadrant, we don’t need to consider the negative version.

    \begin{equation*}cos(\frac{\pi}{12})=\frac{\sqrt{3}+2}{2}\end{equation}

Leave a Comment

Filed under Algebra, Identities, Trigonometry, Year 11 Mathematical Methods

Trig Identities – Addition and Subtraction

Deriving the addition and subtraction trigonometric identities.

We will start with cosine, and use the result to derive the remaining identities.

Proving cos(A-B)=cos(A)cos(B)+sin(A)(sin(B).

A and B are represented in the unit circle below.

Remember P(x_1,y_1)=(cos(A), sin(A)) and Q(x_2, y_2)=(cos(B), sin(B))

Using the cosine rule and triangle OPQ, find PQ

    \begin{equation*}(PQ)^2=1^2+1^2-2(1)(1)cos(A-B)\end{equation}

    \begin{equation*}(PQ)^2=2-2cos(A-B)\end{equation}

Using the distance between points, find PQ

    \begin{equation*}(PQ)^2=(x_1-x_2)^2+(y_1-y_2)^2\end{equation}

    \begin{equation*}(PQ)^2=(cosA-cosB)^2+(sinA-sinB)^2\end{equation}

(PQ)^2=cos^2A-2cosAcosB+cos^2B+sin^2A-2sinAsinB+sin^2B

Remember the Pythagorean identity

    \begin{equation*}cos^2\theta+sin^2\theta=1\end{equation}

    \begin{equation*}(PQ)^2=2-2cosAcosB-2sinAsinB\end{equation}

Hence

    \begin{equation*}2-2cos(A-B)=2-2cosAcosB-2sinAsinB\end{equation}

(1)   \begin{equation*}cos(A-B)=cosAcosB+sinAsinB\end{equation*}

We can then use this identity to find cos(A+B).

    \begin{equation*}cos(A+B)=cos(A-(-B))\end{equation}

    \begin{equation*}cos(A-(-B))=cos(A)cos(-B)+sinAsin(-B)\end{equation}

Remember cos(-B)=cos(B) and sin(-B)=-sin(B)

    \begin{equation*}cos(A-(-B))=cosAcosB-sinAsinB\end{equation}

(2)   \begin{equation*}cos(A+B)=cosAcosB-sinAsinB\end{equation*}

We can also find sin(A+B)

Remember, sin\theta=cos(\frac{\pi}{2}-\theta)

    \begin{equation*}sin(A+B)=cos(\frac{\pi}{2}-(A+B))\end{equation}

    \begin{equation*}sin(A+B)=cos((\frac{\pi}{2}-A)-B)\end{equation}

    \begin{equation*}sin(A+B)=cos(\frac{\pi}{2}-A)cosB+sin(\frac{\pi}{2}-A)sinB\end{equation}

(3)   \begin{equation*}sin(A+B)=sinAcosB+cosAsinB\end{equation*}

We can use equation 2 to find sin(A-B)

    \begin{equation*}sin(A-B)=sin(A+(-B))\end{equation}

    \begin{equation*}sin(A+(-B))=sinAcos(-B)+cosAsin(-B)\end{equation}

    \begin{equation*}sin(A+(-B))=sinAcos(B)-cosAsin(B)\end{equation}

(4)   \begin{equation*}sin(A-B)=sinAcos(B)-cosAsin(B)\end{equation*}

And we can use both the sine and cosine identities to find tan(A+B)

Remember tan\theta=\frac{sin\theta}{cos\theta}

    \begin{equation*}tan(A+B)=\frac{sin(A+B)}{cos(A+B)}\end{equation}

    \begin{equation*}=\frac{sinAcosB+cosAsinB}{cosAcosB-sinAsinB}\end{equation}

    \begin{equation*}=\frac{sinAcosB+cosAsinB}{cosAcosB-sinAsinB}\times \frac{cosAcosB}{cosAcosB}\end{equation}

    \begin{equation*}=\frac{\frac{sinAcosB}{cosAcosB}+\frac{cosAsinB}{cosAcosB}}{\frac{cosAcosB}{cosAcosB}+\frac{sinAsinB}{cosAcosB}}\end{equation}

    \begin{equation*}=\frac{tanA+tanB}{1-tanAtanB}\end{equation}

(5)   \begin{equation*}tan(A+B)=\frac{tanA+tanB}{1-tanAtanB}\end{equation*}

and

(6)   \begin{equation*}tan(A-B)=\frac{tanA-tanB}{1+tanAtanB}\end{equation*}

    \begin{equation*}cos(A\pm B)=cosAcosB\mp sinAsinB\end{equation}


    \begin{equation*}sin(A\pm B)=sinAcosB\pm cosAsinB\end{equation}


    \begin{equation*}tan(A \pm B)=\frac{tan A \pm tanB}{1 \mp tanAtanB}\end{equation}

Leave a Comment

Filed under Addition and Subtraction Identities, Identities, Non-Right Trigonometry, Simplifying fractions, Trigonometry, Year 11 Mathematical Methods, Year 11 Specialist Mathematics

Area/Geometry Problem

This problem is from The Geometry Forum Problem of the Week June 1996

In triangle ABC, AC=18 and D is the point on AC for which AD=5. Perpendiculars drawn from D to AB and CB have lengths of 4 and 5 respectively. What is the area of triangle ABC?

I put together a diagram (in Geogebra)

Add points P and Q

Triangle APD and triangle DQC are right angled. Using pythagoras, AP=3 and QC=12

BQDP is a cyclic quadrilateral and BD is the diameter. I am not sure if this is useful, but it is good to notice.

    \begin{equation*}sin(A+B+C)=sin(180)=0\end{equation}

    \begin{equation*}sin((A+C)+B)=sin(A+C)cosB+sinBcos(A+C)=0\end{equation}

    \begin{equation*}cosB(sinAcosC+sinCcosA)+sinB(cosAcosC-sinAsinC)=0\end{equation}

    \begin{equation*}cosB(\frac{4}{5}\times\frac{12}{13}+\frac{5}{13}\times\frac{3}{5})+sinB(\frac{3}{5}\times\frac{12}{13}-\frac{4}{5}\times\frac{5}{13})=0\end{equation}

    \begin{equation*}cosB(\frac{48}{65}+\frac{15}{65})+sinB(\frac{36}{65}-\frac{20}{65})=0\end{equation}

    \begin{equation*}\frac{63}{65}cosB+\frac{16}{65}sinB=0\end{equation}

    \begin{equation*}63cosB+16sinB=0\end{equation}

    \begin{equation*}63+16tanB=0\end{equation}

    \begin{equation*}tanB=\frac{-63}{16}\end{equation}

If tanB=\frac{-63}{16} then sinB=\frac{63}{65}

Now,

    \begin{equation*}\frac{y+12}{sinA}=\frac{18}{sinB}\end{equation}

    \begin{equation*}y+12=\frac{4}{5}(18)\frac{65}{63}\end{equation}

    \begin{equation*}y+12=\frac{104}{7}\end{equation}

Hence the Area is

    \begin{equation*}A=\frac{1}{2}(18)(\frac{104}{7})sinC\end{equation}

    \begin{equation*}A=\frac{1}{2}(18)(\frac{104}{7})\frac{5}{13}\end{equation}

    \begin{equation*}A=\frac{360}{7}=51.43\end{equation}

Leave a Comment

Filed under Area, Finding an area, Geometry, Identities, Non-Right Trigonometry, Pythagoras, Trigonometry

Differentiating the Tangent Function

Remember tan(x)=\frac{sin(x)}{cos(x)}.

I use the quotient rule to differentiate f(x)=tan(x).

(1)   \begin{equation*}\frac{d}{dx}(\frac{f(x)}{g(x)})=\frac{f'(x)g(x)-g'(x)f(x)}{[g(x)]^2}\end{equation*}

If h(x)=tan(x)=\frac{sin(x)}{cos(x)} then from equation 1

(2)   \begin{equation*}h'(x)=\frac{cos(x)cos(x)-(-sin(x)sin(x))}{[cos(x)]^2}\end{equation*}

(3)   \begin{equation*}h'(x)=\frac{cos^2(x)+sin^2(x)}{cos^2(x)}\end{equation*}

Remember the Pythagorean identity

(4)   \begin{equation*}sin^2(x)+cos^2(x)=1\end{equation*}

Hence

    \begin{equation*}h'(x)=\frac{1}{cos^2(x)}=sec^2(x)\end{equation}

(5)   \begin{equation*}\frac{d}{dx}tan(x)=sec^2(x)\end{equation*}

Leave a Comment

Filed under Calculus, Differentiation, Differentiation, Identities, Quotient Rule, Trigonometry, Year 12 Mathematical Methods

Differentiating Trigonometric Functions

In the last post we looked at two trig limits:

(1)   \begin{equation*}\lim_{x \to 0}\frac{sin(x)}{x}=1\end{equation*}

(2)   \begin{equation*}\lim_{x \to 0}\frac{1-cos(x)}{x}=0\end{equation*}

We are going to use these two limits to differentiate sine and cosine functions from first principals.

    \begin{equation*}f(x)=sin(x)\end{equation}

    \begin{equation*}f'(x)=\lim\limits_{h \to 0}\frac{sin(x+h)-sin(x)}{h}\end{equation}

Use the trig identity

    \begin{equation*}sin(A+B)=sinAcosB+sinBcosA\end{equation}

    \begin{equation*}f'(x)=\lim\limits_{h \to 0}\frac{sin(x)cos(h)+sin(h)cos(x)-sin(x)}{h}\end{equation}

    \begin{equation*}f'(x)=\lim\limits_{h \to 0}(\frac{sin(x)(cos(h)-1)}{h}+\frac{sin(h)cos(x)}{h})\end{equation}

    \begin{equation*}f'(x)=sin(x)\lim\limits_{h \to 0}(\frac{(cos(h)-1)}{h}+cos(x)\lim\limits_{h \to 0}\frac{sin(h)}{h}\end{equation}

    \begin{equation*}f'(x)=sin(x)\lim\limits_{h \to 0}(\frac{-(-cos(h)+1)}{h}+cos(x)\lim\limits_{h \to 0}\frac{sin(h)}{h}\end{equation}

Evaluate the limits

    \begin{equation*}f'(x)=sin(x)\times 0+cos(x)\times (1)=cos(x)\end{equation}

Hence, \frac{d}{dx}sin(x)=cos(x).

Now we are going to do the same for f(x)=cos(x).

    \begin{equation*}f'(x)=\lim\limits_{h \to 0}\frac{cos(x+h)-cos(x)}{h}\end{equation}

Use the trigonometric identity

    \begin{equation*}cos(A+B)=cosAcosB-sinAsinB\end{equation}

    \begin{equation*}f'(x)=\lim\limits_{h \to 0}\frac{cos(x)cos(h)-sin(x)sin(h)-cos(x)}{h}\end{equation}

    \begin{equation*}f'(x)=\lim\limits_{h \to 0}\frac{cos(x)(cos(h)-1)-sin(x)sin(h)}{h}\end{equation}

    \begin{equation*}f'(x)=cos(x)\lim\limits_{h \to 0}\frac{-(1-cos(h))}{h}-sin(x)\lim\limits_{h \to 0}\frac{sin(h)}{h}\end{equation}

Evaluate the limits

    \begin{equation*}f'(x)=cos(x)\times(0)-sin(x)\times (1)=-sin(x)\end{equation}

Hence \frac{d}{dx} cos(x)=-sin(x)

1 Comment

Filed under Calculus, Differentiation, Identities, Trigonometry, Year 12 Mathematical Methods

Trigonometric Limits

\lim\limits_{x \to 0}\frac{sin(x)}{x}=?

Unit Circle

Remember cos(x)=\frac{OA}{OB}=\frac{OA}{1}, hence OA=cos(x) and the co-ordinate of A is (cos(x), 0).

sin(x)=\frac{AB}{OB}=\frac{AB}{1}, hence AB=sin(x) and the co-ordinate of B is (cos(x), sin(x))

And from the definition of tan(x) we know D is the point (1, tan(x))

Consider the areas of triangle OAB, sector OBC, and triangle OCD.

We know from inspection of the above diagram that

Area OAB< Area OCB<Area OCD

Which means,

\frac{1}{2}b_1 h_1<\frac{1}{2}r^2x<\frac{1}{2}b_2 h_2

We can ignore all of the halves.

cos(x)sin(x)<x<(1)tan(x)

Remember tan(x)=\frac{sin(x)}{cos(x)}

cos(x)sin(x)<x<\frac{sin(x)}{cos(x)}

Divide everything by sin(x) (as we are in the first quadrant we know sin(x)>0, so we don’t need to worry about the inequality)

cos(x)<\frac{x}{sin(x)}<\frac{1}{cos(x)}

Invert everything and change the direction of the inequalities)

\frac{1}{cos(x)}>\frac{sin(x)}{x}>cos(x)

I am going to rewrite it as follows

cos(x)<\frac{sin(x)}{x}<\frac{1}{cos(x)}

because I like to use less thans rather than greater thans.

Now what happens as x tends to 0?

cos(0)=1

1<\frac{sin(x)}{x}<\frac{1}{1}

Hence by the squeeze theorem \lim\limits_{x \to 0}\frac{sin(x)}{x}=1

Now we know this limit, we are going to use it to find \lim\limits_{x \to 0}\frac{1-cos(x)}{x}

Multiply by \frac{1+cos(x)}{1+cos(x)}

\lim\limits_{x \to 0}\frac{1-cos(x)}{x}\times \frac{1+cos(x)}{1+cos(x)}

\lim\limits_{x \to 0}\frac{1-cos^2(x)}{x(cos(x)+1)}

\lim\limits_{x \to 0}\frac{sin^2(x)}{x(cos(x)+1)}

\lim\limits_{x \to 0}\frac{sin(x)}{x}\times sin(x)(cos(x)+1)}

\lim\limits_{x \to 0}\frac{sin(x)}{x}\times \lim\limits_{x \to 0}sin(x)(cos(x)+1)

If we evaluate the limits,

(1)(sin(0)(cos(0)+1)=1\times 0 \times 2=0

Hence, \lim\limits_{x \to 0}\frac{1-cos(x)}{x}=0

In the next post we are going to use these limits to differentiate sine and cosine functions.

1 Comment

Filed under Area, Area of Triangles (Sine), Calculus, Identities, Trigonometry, Year 12 Mathematical Methods

Interesting Sum

S=\sum_{n=1}^\infty (tan^{-1}(\frac{2}{n^2})), find S.

I came across this sum in An Imaginary Tale by Nahin and I was fascinated.

Let tan(\alpha)=n+1 and tan(\beta)=n-1.

Remember
tan(\alpha-\beta)=\frac{tan(\alpha)-tan(\beta)}{1+tan(\alpha)tan(\beta)}
Hence,
tan(\alpha-\beta)=\frac{(n+1)-(n-1)}{1+(n+1)(n-1)}
tan(\alpha-\beta)=\frac{2}{1+n^2-1}
tan(\alpha-\beta)=\frac{2}{n^2}
Therefore,
\alpha-\beta=tan^{-1}(\frac{2}{n^2})
and
\alpha=tan^{-1}(n+1) and \beta=tan^{-1}(n-1)

tan^{-1}(n+1)-tan^{-1}(n-1)=tan^{-1}(\frac{2}{n^2})

Which means,

    \begin{equation*}S=\sum_{n=1}^\infty(tan^{-1}(n+1)-tan^{-1}(n-1))\end{equation}

Let’s try a few partial sums

S_4=tan^{-1}(2)-tan^{-1}(0)+tan^{-1}(3)-tan^{-1}(1)+tan^{-1}(4)-tan^{-1}(2)+tan^{-1}(5)-tan^{-1}(3)

S_4=-tan^{-1}(0)+-tan^{-1}(1)+tan^{-1}(4)+tan^{-1}(5)

S_6=tan^{-1}(2)-tan^{-1}(0)+tan^{-1}(3)-tan^{-1}(1)+tan^{-1}(4)-tan^{-1}(2)+tan^{-1}(5)-tan^{-1}(3)+tan^{-1}(6)-tan^{-1}(4)+tan^{-1}(7)-tan^{-1}(5)

S_6=-tan^{-1}(0)+-tan^{-1}(1)+tan^{-1}(6)+tan^{-1}(7)

Hence, S_N=-tan^{-1}(0)+-tan^{-1}(1)+tan^{-1}(N)+tan^{-1}(N+1)

S_N=-\frac{\pi}{4}-0+tan^{-1}(N)+tan^{-1}(N+1)

What happens as N\rightarrow \infty ?

\lim\limits_{N\to \infty}\ S_N=-\frac{\pi}{4}+\frac{\pi}{2}+\frac{\pi}{2}=\frac{3\pi}{4}

Because we know tan(\frac{\pi}{2}) is undefined.

1 Comment

Filed under Identities, Interesting Mathematics, Puzzles, Sequences, Trigonometry

Infinite Product Expansion of cos (x)

Remember

(1)   \begin{equation*}cos(x)=1-\frac{1}{2!}x^2+\frac{1}{4!}x^4-\frac{1}{6!}x^6+...\end{equation*}

We know that cos(x)=0 for odd integer multiples of \frac{\pi}{2}, i.e. \frac{\pi}{2}, \frac{3\pi}{2}, ..., which is \frac{(2n-1)\pi}{2} for n\neq 0

Hence,

    \begin{equation*}0=1-\frac{1}{2!}x^2+\frac{1}{4!}x^4-\frac{1}{6!}x^6+...\end{equation}

for x=\frac{(2n-1)\pi}{2}, n>0

We can factorise our cos(x) expansion

    \begin{equation*}(1-\frac{x^2}{r_1})(1-\frac{x^2}{r_2})...\end{equation}

We know r_1=\frac{\pi}{2}, r_2=\frac{3\pi}{2}, ...

    \begin{equation*}cos(x)=(1-\frac{x^2}{(\frac{\pi}{2})^2})(1-\frac{x^2}{(\frac{3\pi}{2})^2})...(1-\frac{x^2}{(\frac{(2n-1)\pi}{2})^2})\end{equation}

    \begin{equation*}cos(x)=\Pi_{n=1}^{\infty}(1-\frac{x^2}{(\frac{(2n-1)\pi}{2})^2})\end{equation}

    \begin{equation*}cos(x)=\Pi_{n=1}^{\infty}(1-\frac{4x^2}{(2n-1)^2\pi^2})\end{equation}

1 Comment

Filed under Factorising, Identities, Infinite Product Expansion, Interesting Mathematics, Polynomials, Trigonometry

Using De Moivre’s Theorem for Trigonometric Identities

We are going to use De Moivre’s theorem to prove trigonometric identities.

Remember, De Moivre’s Theorem

If z=r(cos(\theta)+isin(\theta)), then z^n=r^n(cos(n\theta)+isin(n\theta))

Or a shorter version z=rcis(\theta), then z^n=r^ncis(n\theta)

Now, let z=cos(\theta)+isin(\theta), find z+\frac{1}{z}

z+z^{-1}=cos(\theta)+isin(\theta)+cos(-\theta)+isin(-\theta)

Remember cos(\theta)=cos(\theta) and sin(-\theta)=-sin(\theta)

z+\frac{1}{z}=cos(\theta)+isin(\theta)+cos(\theta)-isin(\theta)

z+\frac{1}{z}=2cos(\theta)

It is the same for z^n+\frac{1}{z^n}

z^n+z^{-n}=cos(n\theta)+isin(n\theta)+cos(-n\theta)+isin(-n\theta)

z^n+\frac{1}{z^n}=2cos(n\theta)

Prove cos(2\theta)=2cos^2(\theta)-1
LHS=\frac{1}{2}(z^2+\frac{1}{z^2})
LHS=\frac{1}{2}(z^2+\frac{1}{z^2})+z\times\frac{1}{z}-z\times\frac{1}{z}
LHS=\frac{1}{2}(z^2+2z\times\frac{1}{z}+\frac{1}{z^2})-z\times\frac{1}{z}
LHS=\frac{1}{2}(z+\frac{1}{z})^2-1
LHS=\frac{1}{2}(2cos(\theta))^2-1
LHS=\frac{1}{2}(4cos^2(\theta))-1
LHS=2cos^2(\theta)-1
LHS=RHS

We can do something similar with sine.

z-\frac{1}{z}=cos(\theta)+isin(\theta)-(cos(-\theta)+isin(-\theta))

z-\frac{1}{z}=cos(\theta)+isin(\theta)-(cos(-\theta)+isin(-\theta))

z-\frac{1}{z}=cos(\theta)+isin(\theta)-(cos(\theta)-isin(\theta))

z-\frac{1}{z}=cos(\theta)+isin(\theta)-cos(\theta)+isin(\theta)

z-\frac{1}{z}=2isin(\theta)

Hence z^n-\frac{1}{z^n}=2isin(n\theta)

Prove sin(2\theta)=2sin(\theta)cos(\theta)
LHS=sin(2\theta)
LHS=\frac{1}{2i}(z^2-\frac{1}{z^2})
LHS=\frac{1}{2i}(z-\frac{1}{z})(z+\frac{1}{z})
LHS=\frac{1}{2i}(2isin(\theta)(2cos(\theta))
LHS=sin(\theta)2cos(\theta)
LHS=2sin(\theta)cos(\theta)
LHS=RHS

Let’s find an identity for cos(3\theta)

cos(3\theta)=\frac{1}{2}(z^3+\frac{1}{z^3})

=\frac{1}{2}(z^3+\frac{1}{z^3}+3z^2\times\frac{1}{z}+3z\times\frac{1}{z^2}-3z^2\times\frac{1}{z}-3z\times\frac{1}{z^2})

=\frac{1}{2}((z+\frac{1}{z})^3-3z-\frac{3}{z})

=\frac{1}{2}((z+\frac{1}{z})^3-3(z+\frac{1}{z}))

=\frac{1}{2}(2cos(\theta))^3-3(2cos(\theta)))

=\frac{1}{2}(8cos^3(\theta)-6cos(\theta))

=4cos^3(\theta)-3cos(\theta)

\therefore cos(3\theta)=4cos^3(\theta)-3cos(\theta)

And sin(3\theta)?

sin(3\theta)=\frac{1}{2i}(z^3-\frac{1}{z^3})

=\frac{1}{2i}(z^3-\frac{1}{z^3}-3z^2\times\frac{1}{z}+3z\times\frac{1}{z^2}+3z^2\times\frac{1}{z}-3z\times\frac{1}{z^2}

=\frac{1}{2i}((z-\frac{1}{z})^3+3z-\frac{3}{z})

=\frac{1}{2i}(2isin(\theta))^3+3(z-\frac{1}{z}))

=\frac{1}{2i}(-8isin^3(\theta)+6isin(\theta))

=-4sin^3(\theta)+3sin(\theta)

\therefore sin(3\theta)=3sin(\theta)-4sin^3(\theta)

Leave a Comment

Filed under Complex Numbers, Identities, Trig Identities, Trigonometry