Trig Identities and Exact Values

My Year 11 Specialist Mathematics students are working on Trig identities. We came across this question

Without the use of a calculator, evaluate
(a) cos20^\circ\times cos40^\circ\times cos80^\circ

(b)cos(\frac{\pi}{7})\times cos(\frac{2\pi}{7})\times cos(\frac{4\pi}{7})

OT Lee Year 11 Specialist Mathematics textbook

I spent a bit of time thinking about the question. Can you use a product to sum identity twice? But I was always being left with an angle that doesn’t have a nice exact value.

I tried a few things, had a chat to Meta AI, and finally stumbled upon this method.

Remember

    \begin{equation*}sin(2x)=2sin(x)cos(x)\end{equation}

Which can be rearranged to

    \begin{equation*}cos(x)=\frac{sin(2x)}{sin(x)}\end{equation}

(a) cos20^\circ\times cos40^\circ\times cos80^\circ=\frac{sin(40)}{2sin(20)}\frac{sin(80)}{2sin(40)}\frac{sin(160)}{2sin(80)}

Which simplifies to

    \begin{equation*}\frac{sin(160)}{8sin(20)}\end{equation}

Now sin(160)=sin(20)

Hence cos20^\circ\times cos40^\circ\times cos80^\circ=\frac{1}{8}

And we will do the same for part (b)

cos(\frac{\pi}{7})\times cos(\frac{2\pi}{7})\times cos(\frac{4\pi}{7})=\frac{sin(\frac{2\pi}{7})}{2sin(\frac{\pi}{7})}\frac{sin(\frac{4\pi}{7})}{2sin(\frac{2\pi}{7})}\frac{sin(\frac{8\pi}{7})}{2sin(\frac{4\pi}{7})}

Which simplifies to

cos(\frac{\pi}{7})\times cos(\frac{2\pi}{7})\times cos(\frac{4\pi}{7})=\frac{sin(\frac{8\pi}{7})}{8sin(\frac{\pi}{7})}

Now sin(\frac{8\pi}{7})=-sin(\frac{\pi}{7})

Hence cos(\frac{\pi}{7})\times cos(\frac{2\pi}{7})\times cos(\frac{4\pi}{7})=\frac{-1}{8}

And then I had to test them on my Classpad.

Leave a Comment

Filed under Classpad Skills, Identities, Simplifying fractions, Trigonometry, Year 11 Specialist Mathematics

Trigonometric Identities – Product to Sum

Let’s think about the sine and cosine addition and subtraction trig identities.

(1)   \begin{equation*}sin(A+B)=sinAcosB+cosAsinB\end{equation*}

(2)   \begin{equation*}sin(A-B)=sinAcosB-cosAsinB\end{equation*}

If we add equation 1 and 2, we get

    \begin{equation*}sin(A+B)+sin(A-B)=2sinAcosB\end{equation}

Hence, sinAcosB=\frac{1}{2}(sin(A+B)+sin(A-B))

If we subtract equation 2 from equation 1, we get

    \begin{equation*}sin(A+B)-sin(A-B)=2cosAsinB\end{equation}

Hence, cosAsinB=\frac{1}{2}(sin(A+B)-sin(A-B)

What about the cosine addition and subtraction idenities?

(3)   \begin{equation*}cos(A+B)=cosAcosB-sinAsinB\end{equation*}

(4)   \begin{equation*}cos(A-B)=cosAcosB+sinAsinB\end{equation*}

If we add equation 3 and 4, we get

    \begin{equation*}cos(A+B)+cos(A-B)=2cosAcosB\end{equation}

Hence, cosAcosB=\frac{1}{2}(cos(A+B)+cos(A-B))

If we subtract 3 from 4, we get

    \begin{equation*}cos(A-B)-cos(A+B)=2sinAsinB\end{equation}

Hence, sinAsinB=\frac{1}{2}(cos(A-B)-cos(A+B))

These are the product to sum identities.

    \begin{equation*}sinAcosB=\frac{1}{2}(sin(A+B)+sin(A-B))\end{equation}


    \begin{equation*}cosAsinB=\frac{1}{2}(sin(A+B)-sin(A-B))\end{equation}


    \begin{equation*}cosAcosB=\frac{1}{2}(cos(A+B)+cos(A-B))\end{equation}


    \begin{equation*}sinAsinB=\frac{1}{2}(cos(A-B)-cos(A+B))\end{equation}

Examples

(1) Solve sin(5x)-sin(x)=0 for 0\le x \le 2\pi

Remember,

    \begin{equation*}cosAsinB=\frac{1}{2}(sin(A+B)-sin(A-B))\end{equation}

    \begin{equation*}A+B=5\end{equation}

    \begin{equation*}A-B=1\end{equation}

Therefore, A=3 and B=2

    \begin{equation*}sin(5x)-sin(x)=2cos(3x)sin(2x)=0\end{equation}

    \begin{equation*}cos(3x)=0\end{equation}

    \begin{equation*}3x=\frac{\pi}{2},\frac{3\pi}{2}, \frac{5\pi}{2}, \frac{7\pi}{2}, \frac{\9\pi}{2}, \frac{11\pi}{2}\end{equation}

    \begin{equation*}x=\frac{\pi}{6}, \frac{\pi}{2}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{3\pi}{2}, \frac{11\pi}{6}\end{equation}

    \begin{equation*}sin(2x)=0\end{equation}

    \begin{equation*}2x=0, \pi, 2\pi, 3\pi, 4\pi\end{equation}

    \begin{equation*}x=0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi\end{equation}

Hence x=0, \frac{\pi}{6}. \frac{\pi}{2}, \frac{5\pi}{6}, \pi, \frac{7\pi}{6}, \frac{3\pi}{2}, \frac{11\pi}{6}, 2\pi

(2)Solve sin(7\theta)-sin(\theta)=sin(3\theta) for 0 \le \theta \le\2\pi

    \begin{equation*}cosAsinB=\frac{1}{2}(sin(A+B)-sin(A-B))\end{equation}

Therefore, A+B=7 and A-B=1

A=4, B=3

    \begin{equation*}2cos(4\theta)sin(3\theta)=sin(3\theta)\end{equation}

    \begin{equation*}2cos(4\theta)sin(3\theta)-sin(3\theta)=0\end{equation}

    \begin{equation*}sin(3\theta)(2cos(4\theta)-1)=0\end{equation}

sin(3\theta)=0 and cos(4\theta)=\frac{1}{2}

3\theta=0, \pi, 2\pi, 3\pi, 4\pi, 5\pi, 6\pi

\theta=0, \frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3}. 2\pi

cos(4\theta)=\frac{1}{2}

4\theta=\frac{\pi}{3}, \frac{5\pi}{3}, \frac{7\pi}{3}, \frac{11\pi}{3}, \frac{13\pi}{3}, \frac{17\pi}{3}, \frac{19\pi}{3}, \frac{23\pi}{3}

\theta=\frac{\pi}{12}, \frac{5\pi}{12}, \frac{7\pi}{12}, \frac{11\pi}{12}, \frac{13\pi}{12}, \frac{17\pi}{12}, \frac{19\pi}{12}, \frac{23\pi}{12}

Hence \theta=0, \frac{\pi}{3}, \frac{5\pi}{12}, \frac{7\pi}{12}, \frac{11\pi}{12}, \frac{13\pi}{12}, \frac{17\pi}{12}, \frac{5\pi}{3}, \frac{23\pi}{12}, 2\pi

Leave a Comment

Filed under Addition and Subtraction Identities, Identities, Product to Sum idenitites, Trigonometry

Trigonometric Exact Value

Using an appropriate double angle identity, find the exact value of
cos(\frac{\pi}{12})

The double angle identity for sine is

(1)   \begin{equation*}cos(2A)=cos^2A-sin^2A=2cos^2A-1=1-2sin^2A\end{equation*}

That means \frac{\pi}{12} is either 2A or A.

It must be A as 2\times\frac{\pi}{12}=\frac{\pi}{6} as there are exact values for \frac{\pi}{6}

Hence,

    \begin{equation*}cos{\frac{\pi}{6}}=2cos^2{\frac{\pi}{12}}-1\end{equation}

    \begin{equation*}\frac{\sqrt{3}}{2}=2cos^2{\frac{\pi}{12}}-1\end{equation}

    \begin{equation*}\frac{\sqrt{3}}{2}+1=2cos^2{\frac{\pi}{12}}\end{equation}

    \begin{equation*}\frac{\frac{\sqrt{3}}{2}+1}{2}=cos^2{\frac{\pi}{12}}\end{equation}

    \begin{equation*}\frac{\sqrt{3}+2}{4}=cos^2{\frac{\pi}{12}}\end{equation}

    \begin{equation*}\sqrt{\frac{\sqrt{3}+2}{4}}=cos{\frac{\pi}{12}}\end{equation}

As \frac{\pi}{12} is in the first quadrant, we don’t need to consider the negative version.

    \begin{equation*}cos(\frac{\pi}{12})=\frac{\sqrt{3}+2}{2}\end{equation}

Leave a Comment

Filed under Algebra, Identities, Trigonometry, Year 11 Mathematical Methods

Trig Identities – Addition and Subtraction

Deriving the addition and subtraction trigonometric identities.

We will start with cosine, and use the result to derive the remaining identities.

Proving cos(A-B)=cos(A)cos(B)+sin(A)(sin(B).

A and B are represented in the unit circle below.

Remember P(x_1,y_1)=(cos(A), sin(A)) and Q(x_2, y_2)=(cos(B), sin(B))

Using the cosine rule and triangle OPQ, find PQ

    \begin{equation*}(PQ)^2=1^2+1^2-2(1)(1)cos(A-B)\end{equation}

    \begin{equation*}(PQ)^2=2-2cos(A-B)\end{equation}

Using the distance between points, find PQ

    \begin{equation*}(PQ)^2=(x_1-x_2)^2+(y_1-y_2)^2\end{equation}

    \begin{equation*}(PQ)^2=(cosA-cosB)^2+(sinA-sinB)^2\end{equation}

(PQ)^2=cos^2A-2cosAcosB+cos^2B+sin^2A-2sinAsinB+sin^2B

Remember the Pythagorean identity

    \begin{equation*}cos^2\theta+sin^2\theta=1\end{equation}

    \begin{equation*}(PQ)^2=2-2cosAcosB-2sinAsinB\end{equation}

Hence

    \begin{equation*}2-2cos(A-B)=2-2cosAcosB-2sinAsinB\end{equation}

(1)   \begin{equation*}cos(A-B)=cosAcosB+sinAsinB\end{equation*}

We can then use this identity to find cos(A+B).

    \begin{equation*}cos(A+B)=cos(A-(-B))\end{equation}

    \begin{equation*}cos(A-(-B))=cos(A)cos(-B)+sinAsin(-B)\end{equation}

Remember cos(-B)=cos(B) and sin(-B)=-sin(B)

    \begin{equation*}cos(A-(-B))=cosAcosB-sinAsinB\end{equation}

(2)   \begin{equation*}cos(A+B)=cosAcosB-sinAsinB\end{equation*}

We can also find sin(A+B)

Remember, sin\theta=cos(\frac{\pi}{2}-\theta)

    \begin{equation*}sin(A+B)=cos(\frac{\pi}{2}-(A+B))\end{equation}

    \begin{equation*}sin(A+B)=cos((\frac{\pi}{2}-A)-B)\end{equation}

    \begin{equation*}sin(A+B)=cos(\frac{\pi}{2}-A)cosB+sin(\frac{\pi}{2}-A)sinB\end{equation}

(3)   \begin{equation*}sin(A+B)=sinAcosB+cosAsinB\end{equation*}

We can use equation 2 to find sin(A-B)

    \begin{equation*}sin(A-B)=sin(A+(-B))\end{equation}

    \begin{equation*}sin(A+(-B))=sinAcos(-B)+cosAsin(-B)\end{equation}

    \begin{equation*}sin(A+(-B))=sinAcos(B)-cosAsin(B)\end{equation}

(4)   \begin{equation*}sin(A-B)=sinAcos(B)-cosAsin(B)\end{equation*}

And we can use both the sine and cosine identities to find tan(A+B)

Remember tan\theta=\frac{sin\theta}{cos\theta}

    \begin{equation*}tan(A+B)=\frac{sin(A+B)}{cos(A+B)}\end{equation}

    \begin{equation*}=\frac{sinAcosB+cosAsinB}{cosAcosB-sinAsinB}\end{equation}

    \begin{equation*}=\frac{sinAcosB+cosAsinB}{cosAcosB-sinAsinB}\times \frac{cosAcosB}{cosAcosB}\end{equation}

    \begin{equation*}=\frac{\frac{sinAcosB}{cosAcosB}+\frac{cosAsinB}{cosAcosB}}{\frac{cosAcosB}{cosAcosB}+\frac{sinAsinB}{cosAcosB}}\end{equation}

    \begin{equation*}=\frac{tanA+tanB}{1-tanAtanB}\end{equation}

(5)   \begin{equation*}tan(A+B)=\frac{tanA+tanB}{1-tanAtanB}\end{equation*}

and

(6)   \begin{equation*}tan(A-B)=\frac{tanA-tanB}{1+tanAtanB}\end{equation*}

    \begin{equation*}cos(A\pm B)=cosAcosB\mp sinAsinB\end{equation}


    \begin{equation*}sin(A\pm B)=sinAcosB\pm cosAsinB\end{equation}


    \begin{equation*}tan(A \pm B)=\frac{tan A \pm tanB}{1 \mp tanAtanB}\end{equation}

Leave a Comment

Filed under Addition and Subtraction Identities, Identities, Non-Right Trigonometry, Simplifying fractions, Trigonometry, Year 11 Mathematical Methods, Year 11 Specialist Mathematics

General Solutions to Trigonometric Equations

Solve sinx=\frac{1}{2} for 0\le x \le 2\pi

Sine is positive in the first and second quadrants.

    \begin{equation*}sinx=\frac{1}{2}\end{equation}

    \begin{equation*}x=\frac{\pi}{6} \text{ and } x=\pi-\frac{\pi}{6}=\frac{5\pi}{6}\end{equation}

But what if we aren’t given a domain for the x values?

Then we need to give general solutions.

For example,

Solve sinx=\frac{1}{2}

As you can see from the sketch above, there are infinite solutions.

The sine function has a period of 360^\circ, and so if \frac{\pi}{6} is a solution then \2pi+\frac{\pi}{6} is also a solution. This means \frac{\pi}{6}+2\pi n, n\in\mathbb{Z} is a general solution. And we can do the same for the second solution \frac{5\pi}{6}+2\pi n.

In general

    \begin{equation*}sinx=y\end{equation}


    \begin{equation*}x=arcsin(y)+2\pi n \text { and } x=\pi-arcsin(y)+2\pi n \end{equation}


    \begin{equation*}x=arcsin(y)+2\pi n \text { and } x=\pi(2n+1)-arcsin(y), n \in \mathbb{Z}\end{equation}


We can turn this into one equation

    \begin{equation*}x=(-1)^n arcsin(y)+n\pi, n \in \mathbb{Z}\end{equation}

What about cosine?

Solve cosx=\frac{1}{2}

Cosine is positive in the first and fourth quadrants (it also has a period of 2\pi. The first two (positive) solutions are \frac{\pi}{3} and 2\pi-\frac{\pi}{3}.

To generalise, x=2\pi n+\frac{\pi}{3} \text { and }x=2\pi n -\frac{\pi}{3}, which we can make into one equation x=2\pi n \pm \frac{pi}{3}

In general

    \begin{equation*}cosx=y\end{equation}

    \begin{equation*}x=2\pi n \pm arccos(y), n\in\mathbb{Z}\end{equation}

What about the tangent function? Remember tan has a period of \pi.

Solve tanx=\sqrt{3}

First, note that the solutions are all a common distance (\pi) apart.

Tan is positive in the first and the third quadrant

    \begin{equation*}tanx=\sqrt{3}\end{equation}

    \begin{equation*}x=\frac{\pi}{3} \text { and } x=\pi+\frac{\pi}{3}\end{equation}

Because all of the solutions are \pi radians apart, the general solution is x=\frac{\pi}{3} \pm \pi

In general

    \begin{equation*}tanx=y\end{equation}

    \begin{equation*}x=arctan(y) + n\pi, n\in \mathbb{Z}\end{equation}

Examples

Solve for all values of x, tan^2(x)+tan(x)-6=0

    \begin{equation*}tan^2(x)+tan(x)-6=0\end{equation}

This is a quadratic equation – we need two numbers that add to 1 and multiple to -6, +3 \text { and } -2

    \begin{equation*}(tan(x)+3)(tan(x)-2))=0\end{equation}

    \begin{equation*}tan(x)=-3 \text { or } tan(x)=2\end{equation}

    \begin{equation*}x=arctan(-3)+n\pi \text { or } x=arctan(2)+n\pi, n\in\mathbb{Z}\end{equation}


Solve 2cos(2x+\frac{\pi}{18})=\sqrt{3}

    \begin{equation*}2cos(2x+\frac{\pi}{18})=\sqrt{3}\end{equation}

    \begin{equation*}cos(2x+\frac{\pi}{18})=\frac{\sqrt{3}}{2}\end{equation}

    \begin{equation*}2x+\frac{\pi}{18}=2n\pi \pm \frac{\pi}{6}\end{equation}

    \begin{equation*}2x=2n\pi \pm \frac{\pi}{6}-\frac{\pi}{18}\end{equation}

    \begin{equation*}2x=2n\pi \pm \frac{\pi}{9}\end{equation}

    \begin{equation*}x=n\pi \pm \frac{\pi}{18}\end{equation}

Leave a Comment

Filed under Algebra, Quadratic, Solving Equations, Solving Trig Equations, Trigonometry, Year 11 Specialist Mathematics

Continuous Uniform Random Variable

My Year 12 Mathematics Methods students are doing continuous random variables at the moment and I thought it would be worthwhile deriving the mean and variance formulas for a uniform continuous random variable.

The probability density function for a uniform random variable is

    \begin{equation*}f(x)= \left \{ {\begin{matrix}\frac{1}{b-a} &  a\le x\le b \\0 & \text {elsewhere}\end{matrix}}\end{equation}

and it looks like

Remember, the mean \mu or expected value E(X) of a continuous random variable is

(1)   \begin{equation*}E(X)=\int xp(x) dx\end{equation*}

and the variance \sigma^2 is

(2)   \begin{equation*}\sigma^2=\int (x-\mu)^2p(x) dx\end{equation*}

We are going to use equations 1 and 2 to find formulae for a uniform continuous random variable.

    \begin{equation*}\mu=\int_a^b x (\frac{1}{b-a}) dx\end{equation}

    \begin{equation*}\mu=\frac{x^2}{2(b-a)}|\begin{matrix}b\\a\end{matrix}\end{equation}

    \begin{equation*}\mu=\frac{b^2}{2(b-a)}-\frac{a^2}{2(b-a)}=\frac{b^2-a^2}{2(b-a)}\end{equation}

Factorise the numerator (using difference of squares)

    \begin{equation*}\mu=\frac{(b-a)(b+a)}{2(b-a)}\end{equation}

Hence,

    \begin{equation*}\mu=\frac{b+a}{2}\end{equation}

Now for the variance

    \begin{equation*}\sigma^2=\int_a^b (x-(\frac{a+b}{2}))^2(\frac{1}{b-a}) dx\end{equation}

    \begin{equation*}\sigma^2=\frac{1}{b-a}(\frac{(x-\frac{a+b}{2})^3}{3})|\begin{matrix}b\\a\end{matrix}\end{equation}

    \begin{equation*}\sigma^2=\frac{1}{b-a}((\frac{(b-\frac{a+b}{2})^3}{3})-(\frac{(a-\frac{a+b}{2})^3}{3}))\end{equation}

    \begin{equation*}\sigma^2=\frac{1}{b-a}(\frac{-a^3}{12}+\frac{b^3}{12}+\frac{a^2b}{4}-\frac{ab^2}{4})\end{equation}

    \begin{equation*}\sigma^2=\frac{1}{b-a}(\frac{-a^3+b^3+3a^2b-3ab^2}{12})\end{equation}

    \begin{equation*}\sigma^2=\frac{1}{b-a}(\frac{b^3-3b^2a+3ba^2-a^3}{12})\end{equation}

From the binomial expansion theorem, we know

    \begin{equation*}b^3-3b^2a+3ba^2-a^3=(b-a)^3\end{equation}

Hence

    \begin{equation*}\sigma^2=\frac{1}{b-a}(\frac{(b-a)^3}{12}\end{equation}

and

    \begin{equation*}\sigma^2=\frac{(b-a)^2}{12}\end{equation}

Leave a Comment

Filed under Binomial Expansion Theorem, Continuous Random Variables, Probability Distributions, Uniform, Year 12 Mathematical Methods

Integrating the Natural Log Function

One of the students asked me the other day how to integrate f(x)=ln(x) – it’s not part of their course, but I thought I would do it here.

We use integration by parts to integrate ln(x)

    \begin{equation*}\int u dv=uv-\int v du\end{equation}

    \begin{equation*}\int ln(x) dx\end{equation}

Let u=ln(x) and dv=1, then du=\frac{1}{x} and v=x

    \begin{equation*}\int ln(x) dx = xln(x)-\int x\times \frac{dx}{x}\end{equation}

    \begin{equation*}\int ln(x) dx = xln(x)-\int 1 dx\end{equation}

    \begin{equation*}\int ln(x) dx = xln(x)-x+c\end{equation}

What about \int 5ln(\sqrt{x}) dx

We can take advantage of log laws and the properties of integration.

    \begin{equation*}\int 5ln(\sqrt{x}) dx=5\int lnx^{\frac{1}{2}} dx=5\int \frac{1}{2}ln(x) dx=\frac{5}{2} \int ln(x) dx\end{equation}

    \begin{equation*}\frac{5}{2} \int ln(x) dx=\frac{5}{2}(xlnx-x)+c\end{equation}

Leave a Comment

Filed under Integration, Integration by Parts

Simultaneous Equation (or is it?)

Solve simultaneously

X+Y+Z=10
XYZ=30
XY+YZ+XZ=31

We could attempt to solve this simultaneously, but I think the algebra would be tricky.

The three equations are related to the roots of a cubic polynomial.

If the general equation of the polynomial is ax^3+bx^2+cx+d, then we know

The sum of the roots

\alpha+\beta+\gamma=\frac{-b}{a}

The product of the roots

\alpha\beta\gamma=\frac{-d}{a}

and

\alpha\beta+\alpha\gamma+\beta\gamma=\frac{c}{a}

So from our three equations we have

(1)   \begin{equation*}X+Y+Z=10=\frac{-b}{a}\end{equation*}

(2)   \begin{equation*}XYZ=30=\frac{-d}{a}\end{equation*}

(3)   \begin{equation*}XY+YZ+XZ=31=\frac{c}{a}\end{equation*}

Let a=1, then b=-10, c=31, and d=-30

Our cubic is t^3-10t^2+31t-30 and we can try to solve it.

The roots will be factors of -30, so \pm 1, \pm 2, \pm 3, \pm 5, \pm 6, \pm 10, \pm 15, \pm 30

Try t=2

    \begin{equation*}(2)^3-10(2)^2+31(2)-30=0\end{equation}

Hence t=2 is a root.

Use synthetic division to find the quadratic factor

21-1031-30
2-1630
1-8150

The quadratic factor is x^2-8x+15, which factorises to (x-3)(x-5)

Hence the solutions are X=2, Y=3, and Z=5

We could assume the solutions are natural numbers, then we can look at factors of 30.

Factors of ThirtyX+Y+ZXY+YZ+XZ
1, 1, 301+1+30=321+30+30=61
1, 2, 151+2+15=182+15+30=47
1, 5, 61+5+6=125+6+30=41
2, 3, 52+3+5=106+10+15=31

Hence the solutions are X=2, Y=3, and Z=5

But with this approach we might not be able to find the solutions.

Leave a Comment

Filed under Algebra, Cubics, Factorising, Polynomials, Quadratic, Simultaneous Equations, Solving, Sum and Product of Roots

Age Question (Year 8 equation solving)

Eight years ago my father was three times as old as I shall be in five years time. When I was born he was 41 years old. How old am I now?

I always find these age questions a bit weird – a bit of a riddle, and contrived (just so we can solve some equations)

Let x be my age now, and y be my fathers age now.

(1)   \begin{equation*}y=x+41\end{equation*}

Because my father was 41 when I was born.

(2)   \begin{equation*}y-8=3(x+5)\end{equation*}

y-8 for 8 years ago, and 3(x+5) for three times my age in 5 years.

Solve the equations simultaneously. Substitute y=x+41 into equation 2

    \begin{equation*}x+41-8=3(x+5)\end{equation}

    \begin{equation*}x-33=3x+15\end{equation}

    \begin{equation*}18=2x\end{equation}

    \begin{equation*}x=9\end{equation}

Hence my current age is 9.

Leave a Comment

Filed under Algebra, Simultaneous Equations, Solving Equations, Year 8 Mathematics

Synthetic Division (for factorising and/or solving polynomials)

I use synthetic division to factorise polynomials with a degree greater than 2. For example, f(x)=x^3+2x^2-5x-6

It works best with monic polynomials but can be adapted to non-monic ones (see example below).

The only problem is that you need to find a root to start.

Try the factors of -6 i.e. (-1, 1, 2, -2, 3, -3, 6, -6)

f(-1)=(-1)^3+2(-1)^2-5(-1)-6=0

Hence, x=-1 is a root and (x+1) is a factor of the polynomial.

Set up as follows

Bring the first number down

Multiply by the root and place under the second co-efficient

Add down

Repeat the process

The numbers at the bottom (1, 1, -6) are the coefficients of the polynomial factor.

We now know x^3+2x^2-5x-6=(x+1)(x^2+x-6).

We can factorise the quadratic in the usual way.

x^2+x-6=(x+3)(x-2)

Hence x^3+2x^2-5x-6=(x+1)(x+3)(x-2).

Let’s try a non-monic example

Factorise 6x^4+39x^3+91x^2+89x+30

I know -2 is a root. Otherwise I would try the factors of 30.

Use synthetic division

Because this was non-monic we need to divide our new co-efficients (6, 27, 37, 15) by 6 (the co-efficient of the x^4 term)

x^3+\frac{9}{2}x^2+\frac{37}{6}+\frac{5}{2}

We now need to go again. I know that \frac{-3}{2} is a root and (2x+3) is a factor.

Our quadratic factor is x^2+3x+5/3, which is 3x^2+9x+5.

The quadratic factor doesn’t have integer factors so,

6x^4+39x^3+91x^2+89x+30=(x+2)(2x+3)(3x^2+9x+5)

I think this is much quicker than polynomial long division.

Leave a Comment

Filed under Algebra, Factorising, Factorising, Fractions, Polynomials, Quadratic, Simplifying fractions, Solving Equations