Tag Archives: sum to product trig identity

Trigonometric Equation

Solve cos(4\theta)+cos(2\theta)+cos(\theta)=0 for 0\le \theta \le\pi

Remember the identity

(1)   \begin{equation*}cos(A)+cos(B)=2cos(\frac{A+B}{2})cos(\frac{A-B}{2})\end{equation*}

Hence

    \begin{equation*}cos(4\theta)+cos(2\theta)=2cos(3\theta)cos(\theta)\end{equation}

Now I have

    \begin{equation*}2cos(3\theta)cos(\theta)+cos(\theta)=0\end{equation}

    \begin{equation*}cos(\theta)(2cos(3\theta)+1)=0\end{equation}

cos(\theta)=0 or cos(3\theta)=\frac{-1}{2}

\theta=\frac{\pi}{2}

cos(3\theta)=-\frac{1}{2} for 0 \le \theta \le 3\pi

3\theta=\frac{2\pi}{3}, \frac{4\pi}{3}, \frac{8\pi}{3}

\theta=\frac{2\pi}{9}, \frac{4\pi}{9}, \frac{8\pi}{9}

Hence \theta =\frac{\pi}{2},\frac{2\pi}{9}, \frac{4\pi}{9}, \frac{8\pi}{9}

Leave a Comment

Filed under Identities, Quadratic, Solving Equations, Solving Trig Equations, Trigonometry, Year 11 Specialist Mathematics