Tag Archives: Solving Equations

Age Question (Year 8 equation solving)

Eight years ago my father was three times as old as I shall be in five years time. When I was born he was 41 years old. How old am I now?

I always find these age questions a bit weird – a bit of a riddle, and contrived (just so we can solve some equations)

Let x be my age now, and y be my fathers age now.

(1)   \begin{equation*}y=x+41\end{equation*}

Because my father was 41 when I was born.

(2)   \begin{equation*}y-8=3(x+5)\end{equation*}

y-8 for 8 years ago, and 3(x+5) for three times my age in 5 years.

Solve the equations simultaneously. Substitute y=x+41 into equation 2

    \begin{equation*}x+41-8=3(x+5)\end{equation}

    \begin{equation*}x-33=3x+15\end{equation}

    \begin{equation*}18=2x\end{equation}

    \begin{equation*}x=9\end{equation}

Hence my current age is 9.

Leave a Comment

Filed under Algebra, Simultaneous Equations, Solving Equations, Year 8 Mathematics

Puzzle Page 1

If \frac{a+b+2c}{a+b-c}=\frac{31}{15}, what does \frac{a+b}{c} equal?

    \begin{equation*}15(a+n+2c)=31(a+b-c)\end{equation}

    \begin{equation*}15a+15b+30c=31a+31b-31c)\end{equation}

    \begin{equation*}61c=16a+16b)\end{equation}

    \begin{equation*}\frac{61}{16}=\frac{a+b}{c}\end{equation}

Two positive numbers are such that their difference, their sum, and their product are in the ratio 2:5:21. What is the smaller of the two numbers?

Let x and y be the two numbers. Then

(1)   \begin{equation*}x-y=2k\end{equation*}

(2)   \begin{equation*}x+y=5k\end{equation*}

(3)   \begin{equation*}xy=21k\end{equation*}

Add equation 1 and 2 together to eliminate the y

    \begin{equation*}2x=7k\end{equation}

(4)   \begin{equation*}x=\frac{7k}{2}\end{equation*}

From 2 =5k-x, substitute for y into equation 3.

(5)   \begin{equation*}x(5k-x)=21k\end{equation*}

Substitute x=\frac{7k}{2} into equation 5.

    \begin{equation*}\frac{7k}{2}(5k-\frac{7k}{2})=21k\end{equation}

    \begin{equation*}\frac{35k^2}{2}-\frac{49k^2}{4}=21k\end{equation}

    \begin{equation*}\frac{70k^2}{4}-\frac{49k^2}{4}=\frac{84k}{4}\end{equation}

    \begin{equation*}21k^2-84k=0\end{equation}

    \begin{equation*}21k(k-4)=0\end{equation}

Hence, k=0 or k=4.

When k=4, x=\frac{7\times 4}{2}=14 and y=5\times 4-14=6

Therefore the smaller number is 6.

Leave a Comment

Filed under Algebra, Puzzles, Ratio, Solving Equations