The unit square is rotated about the origin by
anti-clockwise.
(a) Find the matrix of this transformation.
(b) Draw the unit square and its image on the same set of axes.
(c) Find the area of the over lapping region.
Remember the general rotation matrix is
Hence
The unit square has co-ordinates

Transform the unit square


The overlapping area is the area of – the area of
We know because the diagonal of a square bisects the angle.
We know is a right angle as it’s on a straight line with the vertex of a square.
Hence is isosceles.
and
, hence
Area of shaded region =