Tag Archives: integrating the natural logarithm

Integrating the Natural Log Function

One of the students asked me the other day how to integrate f(x)=ln(x) – it’s not part of their course, but I thought I would do it here.

We use integration by parts to integrate ln(x)

    \begin{equation*}\int u dv=uv-\int v du\end{equation}

    \begin{equation*}\int ln(x) dx\end{equation}

Let u=ln(x) and dv=1, then du=\frac{1}{x} and v=x

    \begin{equation*}\int ln(x) dx = xln(x)-\int x\times \frac{dx}{x}\end{equation}

    \begin{equation*}\int ln(x) dx = xln(x)-\int 1 dx\end{equation}

    \begin{equation*}\int ln(x) dx = xln(x)-x+c\end{equation}

What about \int 5ln(\sqrt{x}) dx

We can take advantage of log laws and the properties of integration.

    \begin{equation*}\int 5ln(\sqrt{x}) dx=5\int lnx^{\frac{1}{2}} dx=5\int \frac{1}{2}ln(x) dx=\frac{5}{2} \int ln(x) dx\end{equation}

    \begin{equation*}\frac{5}{2} \int ln(x) dx=\frac{5}{2}(xlnx-x)+c\end{equation}

Leave a Comment

Filed under Integration, Integration by Parts