Tag Archives: exact values

Trigonometric Exact Values

Find exactly sin(18^\circ)

We must be able to find an arithmetic combination of the exact values we knew to find 18.

    \begin{equation*}90=5\times 18\end{equation}

    \begin{equation*}90-3(18)=2(18)\end{equation}

I re-arranged as above, so I could take advantage of cos(90)=0 and sin(90)=1

Useful identities
sin(2x)=2sin(x)cos(x)
cos(2x)=cos^2(x)-sin^2(x)=1-2sin^2(x)=2cos^2(x)-1
sin(3x)=3sin(x)-4sin^3(x)
cos(3x)=4cos^3(x)-3cos(x)
sin(A-B)=sin(A)cos(B)-sin(B)cos(A)
cos^2(x)=1-sin^2(x)

    \begin{equation*}sin(90-3(18))=sin(2(18))\end{equation}

    \begin{equation*}sin(90)cos(3(18))-sin(3(18))cos(90)=2sin(18)cos(18)\end{equation}

    \begin{equation*}cos(3(18))=2sin(18)cos(18)\end{equation}

    \begin{equation*}4cos^3(18)-3cos(18)=2sin(18)cos(18)\end{equation}

    \begin{equation*}4cos^3(18)-3cos(18)-2sin(18)cos(18)=0\end{equation}

    \begin{equation*}cos(18)(4cos^2(18)-3-2sin(18))=0\end{equation}

Hence,

    \begin{equation*}4cos^2(18)-2sin(18)-3=0\end{equation}

    \begin{equation*}4-4sin^2(18)-2sin(18)-3=0\end{equation}

    \begin{equation*}-4sin^2(18)-2sin(18)+1=0\end{equation}

Use the quadratic equation formula

    \begin{equation*}sin(18)=\frac{-b\pm \sqrt{b^2-4ac}}{2a}\end{equation}

    \begin{equation*}sin(18)=\frac{2 \pm \sqrt{4-4(-4)(1)}}{-8}\end{equation}

    \begin{equation*}sin(18)=\frac{2 \pm \sqrt{20}}{-8}\end{equation}

    \begin{equation*}sin(18)=\frac{-2 \mp 2\sqrt{5}}{8}\end{equation}

    \begin{equation*}sin(18)=\frac{-1 \mp \sqrt{5}}{4}\end{equation}

As sin(18)>0, sin(18)=\frac{-1+\sqrt{5}}{4}

sin(18)=\frac{-1+\sqrt{5}}{4}

Leave a Comment

Filed under Addition and Subtraction Identities, Algebra, Identities, Quadratic, Quadratics, Solving, Solving Equations, Solving Trig Equations, Trigonometry, Year 11 Specialist Mathematics

Trig Identities and Exact Values

My Year 11 Specialist Mathematics students are working on Trig identities. We came across this question

Without the use of a calculator, evaluate
(a) cos20^\circ\times cos40^\circ\times cos80^\circ

(b)cos(\frac{\pi}{7})\times cos(\frac{2\pi}{7})\times cos(\frac{4\pi}{7})

OT Lee Year 11 Specialist Mathematics textbook

I spent a bit of time thinking about the question. Can you use a product to sum identity twice? But I was always being left with an angle that doesn’t have a nice exact value.

I tried a few things, had a chat to Meta AI, and finally stumbled upon this method.

Remember

    \begin{equation*}sin(2x)=2sin(x)cos(x)\end{equation}

Which can be rearranged to

    \begin{equation*}cos(x)=\frac{sin(2x)}{sin(x)}\end{equation}

(a) cos20^\circ\times cos40^\circ\times cos80^\circ=\frac{sin(40)}{2sin(20)}\frac{sin(80)}{2sin(40)}\frac{sin(160)}{2sin(80)}

Which simplifies to

    \begin{equation*}\frac{sin(160)}{8sin(20)}\end{equation}

Now sin(160)=sin(20)

Hence cos20^\circ\times cos40^\circ\times cos80^\circ=\frac{1}{8}

And we will do the same for part (b)

cos(\frac{\pi}{7})\times cos(\frac{2\pi}{7})\times cos(\frac{4\pi}{7})=\frac{sin(\frac{2\pi}{7})}{2sin(\frac{\pi}{7})}\frac{sin(\frac{4\pi}{7})}{2sin(\frac{2\pi}{7})}\frac{sin(\frac{8\pi}{7})}{2sin(\frac{4\pi}{7})}

Which simplifies to

cos(\frac{\pi}{7})\times cos(\frac{2\pi}{7})\times cos(\frac{4\pi}{7})=\frac{sin(\frac{8\pi}{7})}{8sin(\frac{\pi}{7})}

Now sin(\frac{8\pi}{7})=-sin(\frac{\pi}{7})

Hence cos(\frac{\pi}{7})\times cos(\frac{2\pi}{7})\times cos(\frac{4\pi}{7})=\frac{-1}{8}

And then I had to test them on my Classpad.

Leave a Comment

Filed under Classpad Skills, Identities, Simplifying fractions, Trigonometry, Year 11 Specialist Mathematics