Tag Archives: area

Area/Geometry Problem

This problem is from The Geometry Forum Problem of the Week June 1996

In triangle ABC, AC=18 and D is the point on AC for which AD=5. Perpendiculars drawn from D to AB and CB have lengths of 4 and 5 respectively. What is the area of triangle ABC?

I put together a diagram (in Geogebra)

Add points P and Q

Triangle APD and triangle DQC are right angled. Using pythagoras, AP=3 and QC=12

BQDP is a cyclic quadrilateral and BD is the diameter. I am not sure if this is useful, but it is good to notice.

    \begin{equation*}sin(A+B+C)=sin(180)=0\end{equation}

    \begin{equation*}sin((A+C)+B)=sin(A+C)cosB+sinBcos(A+C)=0\end{equation}

    \begin{equation*}cosB(sinAcosC+sinCcosA)+sinB(cosAcosC-sinAsinC)=0\end{equation}

    \begin{equation*}cosB(\frac{4}{5}\times\frac{12}{13}+\frac{5}{13}\times\frac{3}{5})+sinB(\frac{3}{5}\times\frac{12}{13}-\frac{4}{5}\times\frac{5}{13})=0\end{equation}

    \begin{equation*}cosB(\frac{48}{65}+\frac{15}{65})+sinB(\frac{36}{65}-\frac{20}{65})=0\end{equation}

    \begin{equation*}\frac{63}{65}cosB+\frac{16}{65}sinB=0\end{equation}

    \begin{equation*}63cosB+16sinB=0\end{equation}

    \begin{equation*}63+16tanB=0\end{equation}

    \begin{equation*}tanB=\frac{-63}{16}\end{equation}

If tanB=\frac{-63}{16} then sinB=\frac{63}{65}

Now,

    \begin{equation*}\frac{y+12}{sinA}=\frac{18}{sinB}\end{equation}

    \begin{equation*}y+12=\frac{4}{5}(18)\frac{65}{63}\end{equation}

    \begin{equation*}y+12=\frac{104}{7}\end{equation}

Hence the Area is

    \begin{equation*}A=\frac{1}{2}(18)(\frac{104}{7})sinC\end{equation}

    \begin{equation*}A=\frac{1}{2}(18)(\frac{104}{7})\frac{5}{13}\end{equation}

    \begin{equation*}A=\frac{360}{7}=51.43\end{equation}

Leave a Comment

Filed under Area, Finding an area, Geometry, Identities, Non-Right Trigonometry, Pythagoras, Trigonometry

Tricky Area Ratio Question

A circle of radius r, is inscribed within an isosceles triangle ABC. CA=CB=5r. Given that \angle{ACB} is acute, find the ratio of the area of the circle to that of triangle ABC.

Mathematics Specialist 3AB Question15 page 55

I came across this question while searching for an area of sectors and segments question.

Here’s a diagram

We know AC, AB and BC are tangents to the circle. Because the triangle is isosceles, the distance from A to the circle is the same as the distance from B to the circle.

CP is perpendicular to AB (because the triangle is isosceles).

Because it is proportional, i.e. r and 5r, we can let r=1

Let h=CP

(1)   \begin{equation*}h=\sqrt{25-a^2}\end{equation*}

but h also equals

(2)   \begin{equation*}h=1+\sqrt{(5-a)^2+1}\end{equation*}

Set equation 1 equal to equation 2

    \begin{equation*}\sqrt{25-a^2}={1+\sqrt{(5-a)^2+1}\end{equation}

Square both sides

    \begin{equation*}25-a^2=1+(5-a)^2+1+2\sqrt{(5-a)^2+1}\end{equation}

Expand and simplify

    \begin{equation*}25-a^2=2+25-10a+a^2+2\sqrt{(5-a)^2+1}\end{equation}

    \begin{equation*}0=2-10a+2a^2+2\sqrt{(5-a)^2+1}\end{equation}

Divide by 2

    \begin{equation*}0=1-5a+a^2+\sqrt{(5-a)^2+1}\end{equation}

    \begin{equation*}-\sqrt{(5-a)^2+1}=a^2-5a+1\end{equation}

Square both sides

    \begin{equation*}(5-a)^2+1=a^4-5a^3+a^2-5a^3+25a^2-5a+a^2-5a+1\end{equation}

    \begin{equation*}25-10a+a^2+1=a^4-10a^3+27a^2-10a+1\end{equation}

    \begin{equation*}0=a^4-10a^3+26a^2-25 \end{equation}

I solved this using a graphics calculator

a=-0.8434, a=1.3068, a=4.5367, a=5

We can reject a=-0.8434, a=4.5367, and a=5. If a=5, there isn’t a triangle, and if a=4.5367 \angle{ACB} is not acute.

Hence the area of triangle ABC=a\times h

    \begin{equation*}A_{\Delta}=1.3068\times\sqrt{25-1.3068^2}\end{equation}

(3)   \begin{equation*}A_{\Delta}=6.3069\end{equation*}

(4)   \begin{equation*}A_{\circ}=\pi\end{equation*}

Hence, equation 4 divided by equation 3 is

    \begin{equation*}\frac{\pi}{6.3069}\approx 0.5\end{equation}

Perhaps I approached this question in the wrong way. Is there an easier process?

Leave a Comment

Filed under Area, Geometry, Pythagoras