Puzzle Page 2

If x^2-3x+1=0, then find x^5+\frac{1}{x^5}.

My first thought was to solve for x, but it doesn’t factorise easily, and I didn’t want to find the fifth power of an expression involving surds (x=\frac{3\pm \sqrt{5}}{2}), there must be an easier way.

Because x\neq0, we can divide by x

    \begin{equation*}x-3+\frac{1}{x}=0\end{equation}

Hence

(1)   \begin{equation*}x+\frac{1}{x}=3\end{equation*}

What is the expansion of (x+\frac{1}{x})^5?

Using the binomial expansion theorem

    \begin{equation*}(x+\frac{1}{x})^5=x^5+5x^4(\frac{1}{x})+10x^3(\frac{1}{x^2})+10x^2(\frac{1}{x^3})+5x(\frac{1}{x^4})+\frac{1}{x^5}\end{equation}

    \begin{equation*}(x+\frac{1}{x})^5=x^5+\frac{1}{x^5}+5(x^3+\frac{1}{x^3})+10(x+\frac{1}{x})\end{equation}

Therefore

(2)   \begin{equation*}x^5+\frac{1}{x^5}=(x+\frac{1}{x})^5-5(x^3+\frac{1}{x^3})-10(x+\frac{1}{x})\end{equation*}

Let’s do it again for x^3+\frac{1}{x^3}

    \begin{equation*}(x+\frac{1}{x})^3=x^3+3x^2(\frac{1}{x})+3x(\frac{1}{x^2})+\frac{1}{x^3}\end{equation}

(3)   \begin{equation*}x^3+\frac{1}{x^3}=(x+\frac{1}{x})^3-3(x+\frac{1}{x})\end{equation*}

Substitute 3 into 2

    \begin{equation*}x^5+\frac{1}{x^5}=(x+\frac{1}{x})^5-5((x+\frac{1}{x})^3-3(x+\frac{1}{x}))-10(x+\frac{1}{x})\end{equation}

Remember x+\frac{1}{x}=3

Therefore

    \begin{equation*}x^5+\frac{1}{x^5}=3^5-5(3^3)+15\times3-10\times3\end{equation}

    \begin{equation*}x^5+\frac{1}{x^5}=243-135+45-30=123\end{equation}

This would be a good extension question for students learning the binomial expansion theorem. We also use this technique for trigonometric identities using complex numbers.

Leave a Comment

Filed under Algebra, Binomial Expansion Theorem, Puzzles

Puzzle Page 1

If \frac{a+b+2c}{a+b-c}=\frac{31}{15}, what does \frac{a+b}{c} equal?

    \begin{equation*}15(a+n+2c)=31(a+b-c)\end{equation}

    \begin{equation*}15a+15b+30c=31a+31b-31c)\end{equation}

    \begin{equation*}61c=16a+16b)\end{equation}

    \begin{equation*}\frac{61}{16}=\frac{a+b}{c}\end{equation}

Two positive numbers are such that their difference, their sum, and their product are in the ratio 2:5:21. What is the smaller of the two numbers?

Let x and y be the two numbers. Then

(1)   \begin{equation*}x-y=2k\end{equation*}

(2)   \begin{equation*}x+y=5k\end{equation*}

(3)   \begin{equation*}xy=21k\end{equation*}

Add equation 1 and 2 together to eliminate the y

    \begin{equation*}2x=7k\end{equation}

(4)   \begin{equation*}x=\frac{7k}{2}\end{equation*}

From 2 =5k-x, substitute for y into equation 3.

(5)   \begin{equation*}x(5k-x)=21k\end{equation*}

Substitute x=\frac{7k}{2} into equation 5.

    \begin{equation*}\frac{7k}{2}(5k-\frac{7k}{2})=21k\end{equation}

    \begin{equation*}\frac{35k^2}{2}-\frac{49k^2}{4}=21k\end{equation}

    \begin{equation*}\frac{70k^2}{4}-\frac{49k^2}{4}=\frac{84k}{4}\end{equation}

    \begin{equation*}21k^2-84k=0\end{equation}

    \begin{equation*}21k(k-4)=0\end{equation}

Hence, k=0 or k=4.

When k=4, x=\frac{7\times 4}{2}=14 and y=5\times 4-14=6

Therefore the smaller number is 6.

Leave a Comment

Filed under Algebra, Puzzles, Ratio, Solving Equations

Interesting Equation

I think this one is doing the rounds, I first saw it here.

    \begin{equation*}2^x3^{x^2}=6\end{equation}

x=1 is the obvious answer, 2^1\times 3^1=6, but are there more answers?

This was my approach

    \begin{equation*}ln(2^x3^{x^2})=ln(6)\end{equation}

    \begin{equation*}ln(2^x)+ln(3^{x^2})=ln(6)\end{equation}

    \begin{equation*}xln(2)+x^2ln(3)-ln(6)=0\end{equation}

    \begin{equation*}ln(3)x^2+ln(2)x-ln(6)=0\end{equation}

A quadratic equation.

Hence,

    \begin{equation*}x=\frac{-ln(2)\pm\sqrt{(ln(2))^2-4(ln(3))(ln(6))}}{2ln(3)}\end{equation}

I then used my calculator

Hence x=1 0r x=-1.631

Leave a Comment

Filed under Algebra, Index Laws, Interesting Mathematics, Quadratics, Solving

Infinite Product Expansion of cos (x)

Remember

(1)   \begin{equation*}cos(x)=1-\frac{1}{2!}x^2+\frac{1}{4!}x^4-\frac{1}{6!}x^6+...\end{equation*}

We know that cos(x)=0 for odd integer multiples of \frac{\pi}{2}, i.e. \frac{\pi}{2}, \frac{3\pi}{2}, ..., which is \frac{(2n-1)\pi}{2} for n\neq 0

Hence,

    \begin{equation*}0=1-\frac{1}{2!}x^2+\frac{1}{4!}x^4-\frac{1}{6!}x^6+...\end{equation}

for x=\frac{(2n-1)\pi}{2}, n>0

We can factorise our cos(x) expansion

    \begin{equation*}(1-\frac{x^2}{r_1})(1-\frac{x^2}{r_2})...\end{equation}

We know r_1=\frac{\pi}{2}, r_2=\frac{3\pi}{2}, ...

    \begin{equation*}cos(x)=(1-\frac{x^2}{(\frac{\pi}{2})^2})(1-\frac{x^2}{(\frac{3\pi}{2})^2})...(1-\frac{x^2}{(\frac{(2n-1)\pi}{2})^2})\end{equation}

    \begin{equation*}cos(x)=\Pi_{n=1}^{\infty}(1-\frac{x^2}{(\frac{(2n-1)\pi}{2})^2})\end{equation}

    \begin{equation*}cos(x)=\Pi_{n=1}^{\infty}(1-\frac{4x^2}{(2n-1)^2\pi^2})\end{equation}

1 Comment

Filed under Factorising, Identities, Infinite Product Expansion, Interesting Mathematics, Polynomials, Trigonometry

More Integration

I went down a rabbit hole while reading An Imaginary Tale by Paul J Nahin and I decided I wanted to do this…

    \begin{equation*}\int_0^1{x^x dx}\end{equation}

    \begin{equation*}x^x=e^{ln(x^x)}\end{equation}

    \begin{equation*}x^x=e^{xln(x)}\end{equation}

The power series expansion of e^x is

    \begin{equation*}e^x=1+x+\frac{1}{2!}x^2+\frac{1}{3!}x^3+\frac{1}{4!}x^4+...\end{equation}

    \begin{equation*}\therefore e^{xln(x)}=1+xln(x)+\frac{1}{2!}(xln(x))^2+\frac{1}{3!}(xln(x))^3+...\end{equation}

    \begin{equation*}\therefore e^{xln(x)}=\Sigma_{n=0}^{\infty}(\frac{1}{n!}(xln(x))^n)\end{equation}

Hence \int_0^1{x^x dx}=\int_0^1(\Sigma_{n=0}^{\infty}(\frac{1}{n!}(xln(x))^n dx)

    \begin{equation*}=\Sigma_{n=0}^{\infty}(\frac{1}{n!}\int_0^1xln(x))^n dx)\end{equation}

Let’s consider the integral

(1)   \begin{equation*}\int_0^1 x^n(ln(x))^n dx\end{equation*}

Let u=ln(x) then \frac{du}{dx}=\frac{1}{x} and dx=x du where x=e^u

When x=0, u=-\infty and when x=1, u=0

(2)   \begin{equation*}\int_0^1 x^n(ln(x))^n dx=\int_{-\infty}^0 e^{nu}u^ne^u du\end{equation*}

(3)   \begin{equation*}\int_0^1 x^n(ln(x))^n dx=\int_{-\infty}^0 e^{(n+1)u}u^n du\end{equation*}

Integrate by parts using the tabular method.

SignDifferentiateIntegrate
+u^ne^{(n+1)u}
nu^{n-1}\frac{e^{(n+1)u}}{n+1}
+n(n-1)u^{n-2}\frac{e^{(n+1)u}}{(n+1)^2}
n(n-1)(n-2)u^{n-3}\frac{e^{(n+1)u}}{(n+1)^3}
+\frac{n!}{(n-4)!}u^{n-4}\frac{e^{(n+1)u}}{(n+1)^4}
\vdots\vdots
\frac{n!}{(n-n)!}u^{n-n}\frac{e^{(n+1)u}}{(n+1)^{n}}
(-1)^n0\frac{e^{(n+1)u}}{(n+1)^{n+1}}

When we substitute u=-\infty or u=0 the differentiation column is zero except for \frac{n!}{(n-n)!}u^{n-n}, which is n!,

Thus \int_0^1 x^n(ln(x))^n dx=\frac{e^{(n+1)u}}{(n+1)^{n+1}}}]_{-\infty}^0

    \begin{equation*}=n!\times\frac{e^0}{(n+1)^{n+1}}-0\end{equation}

    \begin{equation*}=\frac{n!}{(n+1)^{n+1}}\end{equation}

Now we just need to think about the sign.

    \begin{equation*}=(-1)^n\frac{n!}{(n+1)^{n+1}}\end{equation}

The integral is now

\int_0^1{x^x dx}=(\Sigma_{n=0}^{\infty}(\frac{1}{n!}( (-1)^n\frac{n!}{(n+1)^{n+1}})

So \int_0^1{x^x dx}=\Sigma_{n=0}^{\infty}( (-1)^n\frac{1}{(n+1)^{n+1}}

Let’s work out some partial sums

n((-1)^n\frac{1}{(n+1)^{n+1}})
5=0.78343
10=0.78343
20=0.78343
100=0.78343

\int_0^1{x^x dx}=0.778343

Leave a Comment

Filed under Definite, Integration, Integration by Parts, Tabular Integration

Integration by Parts using the Tabular Method

(1)   \begin{equation*}\int_0^1x^2e^xdx\end{equation*}

I am going to do this integral in two ways; the traditional method and the tabular method.

Traditional Method

Remember \int{u dv}=u\times v-\int{v du}

Let u=x^2 and dv=e^x

Then du=2x and v=\int{e^x dx}=e^x

    \begin{equation*}\int_0^1{x^2e^x dx}=x^2 \times e^x ]_0^1-\int_0^1{e^x 2x dx}\end{equation}

Now we need to do integration by parts on \int_0^1{e^x 2x dx}

Let u=2x and dv=e^x

Then du=2 and v=e^x

    \begin{equation*}\int_0^1{x^2e^x dx}=x^2 \times e^x ]_0^1-(2x\times e^x]_0^1-\int_0^1{e^x 2 dx})\end{equation}

    \begin{equation*}\int_0^1{x^2e^x dx}=x^2 \times e^x ]_0^1-(2x\times e^x]_0^1-(2e^x )]_0^1)\end{equation}

    \begin{equation*}\int_0^1{x^2e^x dx}=e-(2e-(2e-2))\end{equation}

    \begin{equation*}\int_0^1{x^2e^x dx}=e+2\end{equation}

Tabular Integration

Similar to before, select a u and a dv, u=x^2 and dv=e^x

SignD(ifferentiate)I(ntegrate)
+x^2e^x
2xe^x
+2e^x
0e^x

Stop when the differentiating column reaches zero.

Then we multiply diagonally

(+x^2)(e^x)+(-2x)(e^x)+(+2e^x)

=x^2e^x-2xe^x+2e^x]_0^1

=e-2e+2e-(0-0-2)

=e+2

It is only worth using this method if integration by parts is required more than once. Also, the u has to eventually differentiate to 0.

Let’s try another one

(2)   \begin{equation*}\int{x^3cos(2x) dx}\end{equation*}

Let u=x^3 and dv=cos(2x)

SignDI
+x^3cos(2x)
3x^2\frac{1}{2}sin(2x)
+6x-\frac{1}{4}cos(2x)
6-\frac{1}{8}sin(2x)
+0\frac{1}{16}cos(2x)

\int{x^3cos(2x) dx}=(x^3)(\frac{1}{2}sin(2x))+(-3x^2)(-\frac{1}{4}cos(2x))+(6x)(-\frac{1}{8}sin(2x))+(-6)(\frac{1}{16}cos(2x))+c

=\frac{x^3}{2}sin(2x)+\frac{3x^2}{4}cos(2x)-\frac{3x}{4}sin(2x)-\frac{3}{8}cos(2x)+c

Leave a Comment

Filed under Integration, Integration by Parts, Tabular Integration

Vectors – Closest Approach (2D)

At 10am, object M travelling with constant velocity (20, 10) km/h is sighted at the point with position vector (-100, 100) km. At 11am object N travelling with constant velocity v=(x,y) km/h is sighted at the point with position vector (-20,-50) km respectively. Use a scalar product method to determine v given that the two objects were closest together at a distance of 40 km at 4pm.

OT Lee Mathematics Specialist Year 11

At 4pm M is at the point with position vector (-100+6\times 20, -100+6\times 10)=(20, -40)

and N is at the point with position vector (-20+5\times x, -50+5\times y)=(-20+5x, -50+5y)

We know the distance between M and N at 4pm is 40 km.

Hence,

    \begin{equation*}40^2=(20-(-20+5x))^2+(-40-(-50+5y))^2\end{equation}

    \begin{equation*}40^2=(40-5x)^2+(10-5y)^2\end{equation}

    \begin{equation*}1600=25x^2-400x+1600+25y^2-100y+100\end{equation}

(1)   \begin{equation*}0=x^2+y^2-16x-4y+4\end{equation*}

In the diagram below, I have found the position vector of N relative to M (_Nr_M) and the velocity of N relative to M (N_v_M)

We know that when _Nr_M\cdot_Nv_M=0 M and N are the closest distance apart.

    \begin{equation*}(-40+5x,-10+5y)\cdot(x-20,y-10)=0\end{equation}

    \begin{equation*}(-40+5x)(x-20)+(-10+5y)(y-10)\end{equation}

    \begin{equation*}5x^2+5y^2-140x-60y+900=0\end{equation}

(2)   \begin{equation*}x^2+y^2-28x-12y+180=0\end{equation*}

Two equations and two unknowns which we can solve simultaneously. Both equations are circles.

Equation (1) becomes

(3)   \begin{equation*}(x-8)^2+(y-2)^2=64\end{equation*}

and equation (2) becomes

(4)   \begin{equation*}(x-14)^2+(y-6)^2=52\end{equation*}

From equation (3)

    \begin{equation*}x=\sqrt{64-(y-2)^2}+8\end{equation}

We will worry about the negative version later.

Substitute for x into equation (4)

    \begin{equation*}(\sqrt{64-(y-2)^2}+8-14)^2+(y-6)^2=52\end{equation}

    \begin{equation*}(\sqrt{64-(y-2)^2}-6)^2+(y-6)^2=52\end{equation}

    \begin{equation*}64-(y-2)^2-12\sqrt{64-(y-2)^2}+36+y^2-12y+36=52\end{equation}

    \begin{equation*}136-y^2+4y-4+y^2-12y-12\sqrt{64-(y-2)^2}=52\end{equation}

    \begin{equation*}-12\sqrt{64-(y-2)^2}=-80+8y\end{equation}

    \begin{equation*}\sqrt{64-(y-2)^2}=\frac{20}{3}-\frac{2}{3}y\end{equation}

Square both sides of the equation

    \begin{equation*}64-(y-2)^2=\frac{400}{9}-\frac{80}{9}y+\frac{4}{9}y^2\end{equation}

    \begin{equation*}60-y^2+4y=\frac{400}{9}-\frac{80}{9}y+\frac{4}{9}y^2\end{equation}

    \begin{equation*}0=\frac{13}{9}y^2-\frac{116}{9}y-\frac{140}{9}\end{equation}

    \begin{equation*}0=13y^2-116y-140\end{equation}

    \begin{equation*}0=13y^2-130y+14y-140\end{equation}

    \begin{equation*}0=13y(y-10)+14(y-10)\end{equation}

    \begin{equation*}0=(y-10)(13y+14)\end{equation}

(5)   \begin{equation*}\therefore y=10, y=-\frac{14}{13}\end{equation*}

Substitute y=10 into x=\sqrt{64-(y-2)^2}+8

    \begin{equation*}x=\sqrt{64-(y-2)^2}+8\end{equation}

(6)   \begin{equation*}x=8\end{equation*}

Substitute y=-\frac{14}{13} into x

    \begin{equation*}x=\sqrt{64-(-\frac{14}{13}-2)^2}+8\end{equation}

(7)   \begin{equation*}x=\frac{200}{13}\end{equation*}

Now we need to consider the negative version of x. If you work through (like I did above) you end with the same equation for y.

Hence our two values for v are v=(8,10) or v=(\frac{200}{13},-\frac{14}{13}).

Would someone be expected to do this in an exam? I hope not, but I think its worth doing.

Leave a Comment

Filed under Closest Approach, Vectors, Year 11 Specialist Mathematics

Mathematics Applications – Counting can be Tricky Sometimes (off by one error)

Sequences are part of the Year 12 Mathematics Applications course and sometimes it’s tricky to work out which terms the question requires.

For example, ATAR 2020 Question 11

Judith monitors the water quality in her garden pond at the same time everyday. She likes to maintain the concentration of algae between 200 and 250 unites per 100 litres (L). Her measurements show that the concentration increases daily according to the recursive rule

C_{n+1}=1.025C_n where C_1=200 units per 100 L (the minimum concentration)

When the concentration gets above the 250 units per 100 L limit, she treats the water to bring the concentration back to the minimum 200 units per 100 l.

(a) If Judith treated the water on Sunday 6 December 2020, determine

(i) the concentration on Wednesday, 9 December 2020.
(ii) the day when she next treated the water.

(b) During the first week of January 2021, Judith monitored the water and recorded the following readings

Day1234567
Concentration (C)200206212.28218.55225.10231.85238.81

(i) Determine the revised recursive rule.
(ii) If she treated the water on 10 January and went on holiday until 20 January, when she next treated the water, calculate the concentration of the water on her return. Assuming the recursive rule from (b)(i) is used.

(a)(i) If C_1 is the 6th of December, then what term is the 9th of January?

I find most students simply do 9-6=3 so C_3, but this means they are off by one.
It’s better to list them
6th C_1
7th C_2
8th C_3
9th C_4
Hence we want to find C_4



The concentration on Wednesday 9 December is 215.38 units per 100 L

a(ii) We need to find when the concentration is greater than 250


C_{11}=256.02, what day is C_{11}?
The 9th is C_4, 10th C_5, etc. 16th is C_{11}
Judith next treats the water on Wednesday 16 December

(b)
(i) r=\frac{206}{200}=1.03
C_{n+1}=1.03C_n where C_1=200
(ii) C_1 is the 10th of January, 20th of January is C_{11} (20-10+1)


The concentration of the water on Judith’s return is 268.78 units per 100 L

I get my students to count on their fingers to ensure they get the correct term or day.

Leave a Comment

Filed under Sequences, Sequences, Uncategorized, Year 12 Mathematics Applications

Effect of Function Transformations on Integration

My year 12 Mathematical Methods students have questions like this

Given that f(x) is continuous everywhere and that \int_{4}^{10} f(x) dx=-10, find:

(a) \int_{4}^{10}2x +f(x) dx

(b) \int_{5}^{11} f(x-1) dx

(c) \int_{1}^{3} f(3x+1) dx

(d) \int_{-10}^{-4} -f(-x) dx

(e) \int{10}^{22} f(\frac{x-2}{2}) dx

(f) \int_{-3}^{-9} f(1-x) dx

OT Lee Mathematics Methods Textbook Ex 8.3 question 6

For the most part these questions aren’t too difficult, but the horizontal dilations cause issues.

(a) \int_{4}^{10} 2x +f(x) dx
\int_{4}^{10} 2x  dx +\int_{2}^{10} f(x) dx
(x^2]_4^{10} + (-10)
10^2-4^2-10
=74

(b) \int_{5}^{11} f(x-1) dx
=-10




(c) \int_{1}^{3} f(3x+1) dx
Let u=3x+1
\frac{du}{dx}=3
dx=\frac{du}{3}

When x=1, u=4 and when x=3, u=10
\int_{4}^10 f(u) \frac{du}{3}
=\frac{1}{3}\times (-10)
=\frac{-10}{3}

(d) \int_{-10}^{-4} -f(-x) dx
-\int_{-10}^{-4} f(-x) dx

Let u=-x
\frac{du}{dx}=-1
dx=-du

When x=-4, u=4 and when x=-10, u=10
-\int_{4}^{10} f(u) -dx
=-10

(e) \int_{10}^{22} f(\frac{x-2}{2} dx
Let u=f(\frac{x-2}{2})
\frac{du}{dx}=\frac{1}{2}
\du=2dx

When x=10, u=4 and when x=22, u=10
2\int_{4}^{10} f(u) du
=-20

(f) \int_{-3}^{-9} 2f(1-x) dx
Let u=1-x
\frac{du}{dx}=-1

When x=-3, u=4 and when x=-9, u=10
=-2\int_{4}^{10} f(u) du
=20


Split the integral
Integrate the first part.


This is a horizontal translation (one unit to the right) so the shape of the curve doesn’t change.
The integration bounds have also shifted one unit to the right.




This is a horizontal dilation and translation. The easiest method is to use a change of variable





































Once you get the hang of it, you can skip the change of variable and multiply the value of the definite integral by the scale factor of the horizontal dilation (only if the integration bounds are also changed).

Leave a Comment

Filed under Definite, Integration, Uncategorized, Year 12 Mathematical Methods

Related Rates Question

A boat is moving towards the beach line at 3 metres/minute. On the boat is a rotating light, revolving at 4 revolutions/minute clockwise, as observed from the beach. There is a long straight wall on the beach line, as the boat approaches the beach, the light moves along the wall. Let x equal the displacement of the light from the point O on the wall, which faces the boat directly. See the diagram below.
Determine the velocity, in metres/minute, of the light when x=5 metres, and the distance of the boat from the beach D is 12 metres.

Mathematics Specialist Semester 2 Exam 2018


The light is rotating at 4 revolutions/minute, which means

    \begin{equation*}\frac{d\theta}{dt}=4\times\pi\end{equation}

We want to find \frac{dx}{dt} and we know \frac{d\theta}{dt} and \frac{dD}{dt}.

We need to find an equation connecting x, \theta, and D.

    \begin{equation*}tan (\theta)=\frac{x}{D}\end{equation}

Differentiate (implicitly) with respect to time.

    \begin{equation*}sec^2(\theta)\frac{d\theta}{dt}=\frac{\frac{dx}{dt}D-\frac{dD}{dt}x}{D^2}\end{equation}

Now we know x=5, and D=12, using pythagoras we can calulate the hypotenuse.


h=\sqrt{12^2+3^2}=13
sec(\theta)=\frac{13}{12}

    \begin{equation*}sec^2(\theta)\frac{d\theta}{dt}=\frac{\frac{dx}{dt}D-\frac{dD}{dt}x}{D^2}\end{equation}

    \begin{equation*}(\frac{13}{12})^2\times 4\pi=\frac{\frac{dx}{dt}12-3\times 5}{12^2}\end{equation}

    \begin{equation*}169\times4\pi=12\frac{dx}{dt}-15\end{equation}

    \begin{equation*}676\pi+15=12\frac{dx}{dt}\end{equation}

    \begin{equation*}\frac{dx}{dt}=178.2\end{equation}

The velocity of the light is 178.2 m/minute.

Leave a Comment

Filed under Differentiation, Implicit, Pythagoras, Right Trigonometry, Trigonometry, Uncategorized