Trigonometry Question

I don’t know where I found this question, but it does require algebra and problem solving (as well as right trig and Pythagoras)

From a point A, a lighthouse is on a bearing of 026^\circT and the top of the light house is at an angle of elevation of 20.25^\circ. From a point B, the lighthouse is on a bearing of 296^\cricT and the top of the lighthouse is at angle of elevation of 10.2^\circ. If A and B are 500 metres apart, find the height of the lighthouse.

Let’s draw a diagram.

Let the height of the lighthouse be h

We can find the angle between A, the lighthouse, and B by using the base triangle

The red line from L is parallel to the two north lines. Hence \theta=26^\circ+64^\circ=90^\circ (Alternate angles in parallel lines are congruent)

It’s a right triangle so we know

(1)   \begin{equation*}500^2=(AL)^2+(BL)^2\end{equation*}

We are going to use the other two triangles to find AL and BL


tan(20.25)=\frac{h}{AL}
AL=\frac{h}{tan(20.25)}

tan(10.2)=\frac{h}{BL}
BL=\frac{h}{tan(10.2)}

Substitute AL and BL into equation 1

    \begin{equation*}500^2=(\frac{h}{tan(20.25)})^2+(\frac{h}{tan(10.2)})^2\end{equation}

Solve for h.

    \begin{equation*}500^2=7.35h^2+30.89h^2=38.24h^2\end{equation}

    \begin{equation*}h^2=6538.3\end{equation}

    \begin{equation*}h=80.9m\end{equation}

Leave a Comment

Filed under Algebra, Bearings, Pythagoras, Right Trigonometry, Solving Equations, Trigonometry

Converting recurring (non-terminating) decimals to fractions

The easiest approach is to jump right in with some examples.

Example 1

Convert 0.\overline{5} to a fraction.

Let x=0.\overline{5}

(1)   \begin{equation*}x=0.\overline{5}\end{equation*}

(2)   \begin{equation*}10x=5.\overline{5}\end{equation*}

Subtract equation 1 from equation 2

    \begin{equation*}9x=5\end{equation}

Hence x=\frac{5}{9} so 0.\overline{5}=\frac{5}{9}

Example 2

Convert 0.\overline{12} to a fraction.

Let x=0.\overline{12}

(3)   \begin{equation*}x=0.\overline{12}\end{equation*}

(4)   \begin{equation*}100x=12.\overline{12}\end{equation*}

Subtract equation 3 from equation 4.

    \begin{equation*}99x=12\end{equation}

    \begin{equation*}x=\frac{12}{99}=\frac{4}{33}\end{equation}

Example 3

Convert 0.1\overline{23} to a fraction

Let x=0.1\overline{23}

(5)   \begin{equation*}x=0.1\overline{23}\end{equation*}

(6)   \begin{equation*}10x=1.\overline{23}\end{equation*}

(7)   \begin{equation*}1000x=123.\overline{23}\end{equation*}

Subtract equation 6 from equation 7

    \begin{equation*}990x=122\end{equation}

    \begin{equation*}x=\frac{122}{990}=\frac{61}{495}\end{equation}

Our aim is to manipulate the recurring decimal to create two numbers each which have only the repeated digits after the decimal point.

One more example.

Example 4

Convert 3.4\overline{56} to a fraction

Let x=3.4\overline{56}

If I multiply by 10, then I will have 34.\overline{56} – only repeated digits after the decimal point.

If I multiply by 1000, then I will have 3456.\overline{56}– only repeated digits after the decimal point.

So I get,

    \begin{equation*}990x=3422\end{equation}

    \begin{equation*}x=\frac{3422}{990}=3\frac{226}{495}\end{equation}

You can also use your Casio classpad to do the conversion. Although I think it is easier just to do it yourself.

Let’s think about example 4,

3.4\overline{56}=3.4+\frac{56}{1000}+\frac{56}{100000}+\frac{56}{10000000}+...

Which is

3.4+\frac{56}{1000\times 100^0}+\frac{56}{1000\times100^1}+\frac{56}{1000\times 100^2}...

3.4+\Sigma_{x=0}^\infty(\frac{56}{1000\times 100^x})

Leave a Comment

Filed under Arithmetic, Decimals, Fractions, Year 11 Specialist Mathematics

Square Root Puzzle

Is it possible to find three numbers, a, b, c, none of which is zero or a perfect square, such that
\sqrt{a}+\sqrt{b}=\sqrt{c}

Can You Solve These – David Wells

As a, b and c can’t be perfect squares, let a=d\times e^2, b=f\times g^2 and c=h\times k^2 where d, e, f, g, h and k are real numbers.

Hence \sqrt{a}=e\sqrt{d}, \sqrt{b}=g\sqrt{f} and \sqrt{c}=k\sqrt{h}.

    \begin{equation*}\sqrt{a}+\sqrt{b}=\sqrt{c}\end{equation}

    \begin{equation*}e\sqrt{d}+g\sqrt{f}=k\sqrt{h}\end{equation}

For the above equation to be possible d, f and h must simplify to the same surd. Because we are looking for one set of numbers, let d=f=h.

    \begin{equation*}e\sqrt{d}+g\sqrt{d}=k\sqrt{d}\end{equation}

    \begin{equation*}e+g=k\end{equation}

Let’s think of some numbers that might work…

1+2=3 or 2+3=5, etc.

Let’s try e=1, g=2, and k=3

We now have a=d, b=4d, and c=9d

As a can’t be a square number, d can’t be a square number.

Try d=2

    \begin{equation*}\sqrt{2}+\sqrt{8}=\sqrt{18}\end{equation}

LHS=\sqrt{2}+2\sqrt{2}

LHS=3\sqrt{2}

LHS=\sqrt{9\times 2}

LHS=\sqrt{18}

LHS=RHS

One set of possible numbers are 2, 8,and 18.

Leave a Comment

Filed under Algebra, Interesting Mathematics, Puzzles

Closest Approach (Shortest Distance) e-activity (Casio Classpad)

At 1pm, object H travelling with constant velocity \begin{pmatrix}200\\10\end{pmatrix}km/h is sighted at the point with position vector \begin{pmatrix}-90\\-100\end{pmatrix}km. At 2pm object J travelling with constant velocity \begin{pmatrix}100\\-100\end{pmatrix}km/h is sighted at the point with position vector \begin{pmatrix}20\\-120\end{pmatrix}km. Determine the minimum distance between H and J and when this occurs.

OT Lee Mathematics Specialist Year 11 Unit 1 and 2 Exercise 10.1 Question 6.

(1)   \begin{equation*}\mathbf{r_H}=\begin{pmatrix}-90\\-100\end{pmatrix}+t\begin{pmatrix}200\\10\end{pmatrix}\end{equation*}

(2)   \begin{equation*}\mathbf{r_J}=\begin{pmatrix}-80\\-20\end{pmatrix}+t\begin{pmatrix}100\\-100\end{pmatrix}\end{equation*}

\begin{pmatrix}-80\\-20\end{pmatrix} is the position vector of J at 1pm.

Find the relative displacement of H to J

    \begin{equation*}\mathbf{_H}\mathbf{r_J}=\mathbf{r_H}-\mathbf{r_J}\end{equation}

    \begin{equation*}\mathbf{_H}\mathbf{r_J}=\begin{pmatrix}-90\\-100\end{pmatrix}+t\begin{pmatrix}200\\10\end{pmatrix}-(\begin{pmatrix}-80\\-20\end{pmatrix}+t\begin{pmatrix}100\\-100\end{pmatrix})\end{equation}

    \begin{equation*}\mathbf{_H}\mathbf{r_J}=\begin{pmatrix}-10\\-80\end{pmatrix}+t\begin{pmatrix}100\\110\end{pmatrix}\end{equation}

Find the relative velocity of H to J

    \begin{equation*}\mathbf{_H}\mathbf{v_J}=\begin{pmatrix}100\\110\end{pmatrix}\end{equation}

The relative displacement is perpendicular to the relative velocity at the closest approach.

That is

(3)   \begin{equation*}\mathbf{_H}\mathbf{r_J}\cdot\mathbf{_H}\mathbf{v_J}=0\end{equation*}

    \begin{equation*}(\begin{pmatrix}-10\\-80\end{pmatrix}+t\begin{pmatrix}100\\110\end{pmatrix})\cdot(\begin{pmatrix}100\\110\end{pmatrix})=0\end{equation}

    \begin{equation*}(-10+100t)(100)+(-80+110t)(110)=0\end{equation}

    \begin{equation*}-1000+10 000t-8800+12100t=0\end{equation}

    \begin{equation*}22100t=9800\end{equation}

    \begin{equation*}t=\frac{98}{221}\end{equation}

Substitute t=\frac{98}{221} into the relative displacement and find the magnitude.

    \begin{equation*}\mathbf{_H}\mathbf{r_J}=\begin{pmatrix}-10\\-80\end{pmatrix}+\frac{98}{221}\begin{pmatrix}100\\110\end{pmatrix}\end{equation}

    \begin{equation*}\mathbf{_H}\mathbf{r_J}=\begin{pmatrix}34\frac{76}{221}\\-31\frac{49}{221}\end{pmatrix}\end{equation}

    \begin{equation*}\|\begin{pmatrix}34\frac{76}{221}\\-31\frac{49}{221}\end{pmatrix}\|=46.4\end{equation}

The closest objects H and J get to each other is 46.4km at 1:27pm.

I have made an e-activity for this.

Leave a Comment

Filed under Classpad Skills, Closest Approach, Vectors, Year 11 Mathematical Methods

A Counting Question

How many three digit numbers can you form from the digits 1, 2, 3, 4 and 5 if

(a) the digits must occur in increasing order?

(b) adjacent digits differ by 2?

Cambridge Year 11 Specialist Mathematics Skill Sheet 1A

(a) There are 5\times 4\times 3=60 permutations of three digits from the five digits, but how many of those are in the right order?

Each set of 3 digits has 6 arrangements (3\times 2\times 1=6).

For example, if the set is {1, 2, 3}, then the possible arrangements are:

123, 132, 213, 231, 312, and 321.

Only one of those arrangements is in numerical order.

Hence what we want is \begin{pmatrix}5\\3\end{pmatrix}=10

(b) I think this one is more about creating a list. I shall start with 1

135, 531, 131, 242, 353, 424, 535, 315

There are 8 possibilities.

Leave a Comment

Filed under Counting Techniques, Year 11 Specialist Mathematics

Circle Geometry Problem

In the diagram, points A, B, C, D and Q lie on a circle centre O, radius 6 cm and diameter BQ, \angle{ABQ}=50^\circ, AB is parallel to DO and point P lies on diameter BQ such that OP=DP=4cm.

(a) Find \angle{BCD}

(b) Determine the length of PC.

\angle{BOD}=180^\circ-50^\circ=130^\circ (Co-interior angles in parallel lines are supplementary.)

\angle{BCD}=\frac{1}{2}\times 130=65^\circ (Angles subtended by the same arc. The angle at the centre is twice the angle at the circumference.)

\angle{BCD}=65^\circ.

Let PC=x

From the intersecting chord theorem

    \begin{equation*}4\times x=2\times 10\end{equation}

    \begin{equation*}4x=20\end{equation}

    \begin{equation*}x=5\end{equation}

PC=5cm


A chord AB of a circle O is extended to C. The straight line bisecting \angle{OAB} meets the circle at E. Let \angle{BAE}=x. Prove that EB bisects \angle{OBC}.

\angle{BAO}=2x (AE bisects \angle {BAO})

\Delta AOB is isosceles (AO=B0 radii of the circle)

\angle{ABO}=2x (Equal angles in isosceles triangle)

Therefore \angle {AOB}=180^\circ-4x (angle sum of a triangle)

\angle {BEA}=90^\circ-2x (angle at the circumference is half angle at the centre)

\angle{ABE}=180^\circ-x-(90^\circ-2x)=90^\circ+x (angle sum of a triangle)

\angle{CBE}=180^\circ-(90^\circ+x)=90^\circ-x (angles on a straight line)

\angle{OBE}=90^\circ+x-2x=90^\circ-x

\angle{OBE}=\angle{CBE}

Hence, BE bisects \angle{OBC}

Leave a Comment

Filed under Circle Theorems, Geometry, Uncategorized, Year 11 Specialist Mathematics

Perfect Squares

Find all of the positive integers that make the following expression a perfect square.

(1)   \begin{equation*}(x-10)(x+14)\end{equation*}

Let

    \begin{equation*}(x-10)(x+14)=n^2\end{equation}

where n is an integer.

Expand and simplify

    \begin{equation*}x^2+4x-140=n^2\end{equation}

    \begin{equation*}x^2-4x-n^2=140\end{equation}

Complete the square

    \begin{equation*}(x+2)^2-4-n^2=140\end{equation}

    \begin{equation*}(x+2)^2-n^2=144\end{equation}

Factorise (using difference of perfect squares)

    \begin{equation*}(x+2-n)(x+2+n)=144\end{equation}

Find all of the factors of 144

(1,144), (2, 72), (3, 48), (4, 36), (6, 24), (8, 18), (9, 16), (12, 12)

First pair,

    \begin{equation*}x+2-n=1 \tag {1} \end{equation}

    \begin{equation*}x+2+n=144 \tag {2} \end{equation}

2x=141

x must be an integer.

I then used a spreadsheet

Solved for the x values.

Hence the integers that make (x-10)(x+14) are perfect square are, 10, 11, 13, 18, and 35.

Let’s try another one,

(x-6)(x+14)

(2)   \begin{equation*}(x-6)(x+14)=n^2\end{equation*}

    \begin{equation*}(x^2+8x-84=n^2\end{equation}

    \begin{equation*}(x+4)^2-n^2=100\end{equation}

    \begin{equation*}(x+4-n)(x+4+n)=100\end{equation}

Factors of 100,

(1, 100), (2, 50), (4, 25), (5, 20), (10, 10)

So the possible integers are 6 and 22.

Leave a Comment

Filed under Algebra, Arithmetic, Divisibility, Interesting Mathematics, Puzzles, Quadratic, Solving Equations

Combinations Proof

Prove \begin{pmatrix}n+1\\r\end{pmatrix}=\begin{pmatrix}n\\r-1\end{pmatrix}+\begin{pmatrix}n\\r\end{pmatrix}

Let’s start with the right hand side.

RHS=\begin{pmatrix}n\\r-1\end{pmatrix}+\begin{pmatrix}n\\r\end{pmatrix}

RHS=\frac{n!}{(n-(r-1))!(r-1)!}+\frac{n!}{(n-r)!r!}

Simplify

RHS=\frac{n!}{(n+1-r)!}+\frac{n!}{(n-r)!r!}

There is a common denominator of (n+1-r)!r!

RHS=\frac{n!}{(n+1-r)!}\times \frac{r}{r}+\frac{n!}{(n-r)!r!}\times \frac{n+1-r}{n+1-r}

RHS=\frac{n!r+n!(n+1-r)}{(n+1-r)r!}

RHS=\frac{n!r+(n+1)n!-n!r}{(n+1-r)!r!}

RHS=\frac{(n+1)!}{(n+1-r)!r!}

RHS=\begin{pmatrix}n+1\\r\end{pmatrix}

RHS=LHS

We know this intuitively from Pascal’s triangle

Where each entry is the sum of the two entries above it – for example,

6+4=10

Remember, Pascal’s triangle can be written as combinations,

so \begin{pmatrix}5\\3\end{pmatrix}=\begin{pmatrix}4\\2\end{pmatrix}+\begin{pmatrix}4\\3\end{pmatrix}

Leave a Comment

Filed under Algebra, Counting Techniques, Year 11 Mathematical Methods

Geometry Puzzle

Another puzzle from this book

Two ladders are propped up vertically in a narrow passageway between two vertical buildings. The ends of the ladders are 8 metres and 4 metres above the pavement.
Find the height above the ground, T,

\Delta ABC \sim \Delta TEC and \Delta DCB \sim  \Delta TEB (Angle Angle Similarity)

Hence,

(1)   \begin{equation*}\frac{h}{8}=\frac{x}{x+y}\end{equation*}

(2)   \begin{equation*}\frac{h}{4}=\frac{y}{x+y}\end{equation*}

From equation 1 h=\frac{8x}{x+y} and from 2 h=\frac{4y}{x+y}

Hence, \frac{8x}{x+y}=\frac{4y}{x+y}

Therefore, 8x=4y and y=2x

From equation 1

    \begin{equation*}h=\frac{8x}{3x}=\frac{8}{3}\end{equation}

Hence T is 2 \frac{2}{3}m above the ground.

Leave a Comment

Filed under Geometry, Puzzles, Similarity, Simplifying fractions, Solving Equations

Factorising Non-Monic Quadratics

The general equation of a quadratic is ax^2+bx+c

Let’s explore different methods of factorising a non-monic quadratic (the a term is not 1)

Factorise 6x^2+x-12

We need to find two numbers that add to 1 and multiply to -72 (i.e. add to b and multiply to a\times c)

The two numbers are 9 and -8

Method 1 – Splitting the middle term

This is the method I teach the most often

    \begin{equation*}6x^2+x-12\end{equation}

Split the middle term (the b term) into the two numbers

    \begin{equation*}6x^2-8x+9x-12\end{equation}

The order doesn’t matter.

Find a common factor for the first term terms, and then for the last two terms.

    \begin{equation*}2x(3x-4)+3(3x-4)\end{equation}

There is a common factor of (3x-4), factor it out.

    \begin{equation*}(3x-4)(2x+3)\end{equation}

Method two – Fraction

    \begin{equation*}6x^2+x-12\end{equation}

Put 6x into both factors and divide by 6

    \begin{equation*}\frac{(6x-8)(6x+9)}{6}\end{equation}

Factorise

    \begin{equation*}\frac{2(3x-4)3(2x+3)}{6}\end{equation}

    \begin{equation*}\frac{6(3x-4)(2x+3)}{6}\end{equation}

    \begin{equation*}(3x-4)(2x+3)\end{equation}

Method 3 – Monic to non-monic

    \begin{equation*}y=6x^2+x-12\end{equation}

Multiply both sides of the equation by a

    \begin{equation*}6y=6(6x^2+x-12)\end{equation}

    \begin{equation*}6y=6^2x^2+6x-72\end{equation}

    \begin{equation*}6y=(6x)^2+6x-72\end{equation}

Let A=6x

    \begin{equation*}6y=A^2+A-72\end{equation}

Factorise

    \begin{equation*}6y=(A+9)(A-8)\end{equation}

Replace the A with 6x

    \begin{equation*}6y=(6x+9)(6x-8)\end{equation}

    \begin{equation*}6y=3(2x+3)2(3x-4)\end{equation}

    \begin{equation*}6y=6(2x+3)(3x-4)\end{equation}

    \begin{equation*}y=(2x+3)(3x-4)\end{equation}

Method 4 – Cross Method

    \begin{equation*}6x^2+x-12\end{equation}

Place the two numbers in the cross

Place the two numbers that add to 1 and multiply to -72 in the other parts of the cross.

Divide these two numbers by 6 (i.e a)

Simplify

Hence,

    \begin{equation*}(x-\frac{4}{3})(x+\frac{3}{2})\end{equation}

Which is

    \begin{equation*}(3x-4)(2x+3)\end{equation}

Method 5 – By Inspection

This is my least favourite method – although students get better with practice

    \begin{equation*}6x^2+x-12\end{equation}

The factors of a are 1, 2, 3, and 6 and the factors of 12 are 1, 2, 3, 4, 6, 12

We know one number is positive and one number negative.

Which give us all of these possibilities

Possible factorisationsb term of expansion
(x-1)(6x+12)12x-6x=6xNo
(x-2)(6x+6)6x-12x=-6xNo
(x-3)(6x+4)4x-18x-14xNo
(2x-1)(3x+12)24x-3x=21xNo
(2x-2)(3x+6)12x-6x=6xNo
(2x-3)(3x+4)8x-9x=-1xAlmost, switch the signs
(2x+3)((3x-4)-8x+9x=1xYes

    \begin{equation*}(2x+3)(3x-4)\end{equation}

With a bit of practice you don’t need to check all of the possibilties, but I find students struggle with this method.

Method 6 – Grid

    \begin{equation*}6x^2+x-12\end{equation}

Create a grid like the one below

6x^2
-12

Find the two numbers that multiply to -72 and add to 1 and place them in the other grid spots (see below)

6x^2-8x
9x-12

Find the HCF (highest common factor) of each row and put in the first column.

Row 1 HCF=2x, Row 2 HCF=3

2x6x^2-8x
39x-12

For the columns, calculate what is required to multiple the HCF to get the table entry.

For example, what do you need to multiple 2x and 3 by to get 6x^2 and 9x? In this case it is 3x. It’s always going to be the same thing, so just use one value to calculate it,

3x-4
2x6x^2-8x
39x-12

The factors are column 1 and row 1
(2x+3)(3x-4)

The two methods I use the most are splitting the middle term, and the cross method, but I can see value in the grid method.

Leave a Comment

Filed under Algebra, Factorising, Factorising, Polynomials, Quadratic, Quadratics