Divisibility Rule for 11

I was working on a question and involved 11 and I wondered what the divisibility rule was?

So then I had a bit of a think about it.

Let N be a number divisible by 11. The N (mod11)=0

    \begin{equation*}N=a_n\times10^n+a_{n-1}\times10^{n-1}+a_{n-2}\times10^{n-2}+...+a_0\times10^0\end{equation}

    \begin{equation*}0=a_n\times10^n (mod11)+a_{n-1}\times10^{n-1}(mod11)+a_{n-2}\times10^{n-2}(mod11)+...+a_0\times10^0(mod11)\end{equation}

Now 10 (mod11)=10 which is congruent to -1 because 10-(-1)=11, which is a multiple of 11.

Thus

    \begin{equation*}0=a_n(-1)^n+a_{n-1}(-1)^{n-1}+a_{n-2}(-1)^{n-2}+...+a_0(-1)^0\end{equation}

Odd powers will be negative and even positive.

So if we start at one end of the number and add every second digit (i.e. first digit plus third digit plus fifth digit etc.) and then subtract the other digits (i.e. second digit, fourth digit, six digit, etc.), if that equals zero then the number is divisible by 11.

For example, is 1756238 divisible by 11?

1+5+2+8-7-6-3=16-16=0

Hence 1756238 is divisible by 11

Leave a Comment

Filed under Algebra, Arithmetic, Divisibility, Index Laws, Interesting Mathematics, Number Bases

Deriving the sum formula for an Arithmetic Progression

Arithmetic progressions (or arithmetic sequences) are sequences with a common difference (i.e. the same number is added or subtracted to get the next number in the sequence).

For example,

2, 5, 8, 11, 14, ...

or

12,10, 8, 6, 4, ...

The n^{th} term of an arithmetic progression is T_n=a+(n-1)d where a is the first term and d is the common difference.

i.e. For the sequence above, T_4=12+(4-1)(-2)=6

An arithmetic series is the sum of the arithmetic progression.

For example, if the sequence is

3, 7, 11, 15, ...

then S_1=3, S_2=3+7=10, S_3=3+7+11=21

The series is also a sequence and we are going to find the general term, S_n.

    \begin{equation*}S_n=T_1+T_2+T_3+...+T_n\end{equation}

which we can write as

    \begin{equation*}S_n=a+a+d+a+2d+...+a+(n-1)d\end{equation}

Now, I am going to write that in reverse order (to make the next bit more obvious)

    \begin{equation*}S_n=a+(n-1)d+a+(n-2)d+a+(n-3)d+ ... +a\end{equation}

I am going to add the two versions of S_n together

Each term has an a and there are n terms, so we now have 2na. The d terms, we going to group together

d+(n-1)d+2d+(n-2)d+3d+(n-3)d+ ... +(n-1)d+d

Which simplifies to nd+nd+nd+ ...+nd and we have (n-1) d terms. So this part of the sum is (n-10nd

Thus we have

    \begin{equation*}2S_n=2an+(n-1)nd\end{equation}

Which simplifies to

(1)   \begin{equation*}S_n=\frac{n}{2}(2a+(n-1)d)\end{equation*}

Let’s test it, remember the sequence 3, 7, 11, 15, .... We know S_3=21

    \begin{equation*}S_3=\frac{3}{2}(2(3)+(3-1)(4))=\frac{3}{2}(14)=21\end{equation}

Leave a Comment

Filed under Algebra, Arithmetic, Sequences, Year 11 Mathematical Methods

Linear Transformation (Rotation) Question

The unit square is rotated about the origin by 45^\circ anti-clockwise.
(a) Find the matrix of this transformation.
(b) Draw the unit square and its image on the same set of axes.
(c) Find the area of the over lapping region.

Remember the general rotation matrix is

    \begin{equation*}\begin{bmatrix}cos(\theta)&-sin(\theta)\\sin(\theta)&cos(\theta)\end{bmatrix}\end{equation}

Hence

    \begin{equation*}\begin{bmatrix}cos(45)&-sin(45)\\sin(45)&cos(45)\end{bmatrix}=\begin{bmatrix}\frac{1}{\sqrt{2}}&-\frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}\end{bmatrix}\end{equation}

The unit square has co-ordinates

\begin{bmatrix}0 & 1 & 1& 0\\0&0&1&1\end{bmatrix}

Unit Square

Transform the unit square

\begin{bmatrix}\frac{1}{\sqrt{2}}&-\frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}\end{bmatrix}\begin{bmatrix}0 & 1 & 1& 0\\0&0&1&1\end{bmatrix}=\begin{bmatrix}0&\frac{1}{\sqrt{2}}&0&-\frac{1}{\sqrt{2}}\\0&\frac{1}{\sqrt{2}}&\frac{2}{\sqrt{2}}&\frac{1}{\sqrt{2}}\end{bmatrix}

Unit Square and Transformed Unit Square

The overlapping area is the area of \Delta ADC– the area of \Delta EFC

We know \angle{FCE}=45^\circ because the diagonal of a square bisects the angle.

We know\angle{EFC} is a right angle as it’s on a straight line with the vertex of a square.

Hence \Delta EFC is isosceles.

\overline{AC}=\sqrt{1^2+1^2}=\sqrt{2} and \overline{AF}=1, hence \overline{FC}=\sqrt{2}-1

A_{\Delta ADC}=\frac{1}{2}(1)(1)=\frac{1}{2}

A_{\Delta ECF}=\frac{1}{2}(\sqrt{2}-1)(\sqrt{2}-1)

Area of shaded region =\frac{1}{2}-\frac{1}{2}(3-2\sqrt{2})=\sqrt{2}-1

Leave a Comment

Filed under Area, Co-ordinate Geometry, Finding an area, Geometry, Matrices, Transformations, Year 11 Specialist Mathematics

Clock (Geometry Question)

At what time after 2pm will the minute hand over take the hour hand?

Let the distance the minute hand moves be x^\circ. Then the distance the hour hand moves is x-60^\circ (The angle between the hands at 2pm is 60^\circ)

The rate the hour hand moves is R_H=\frac{30}{60}=\frac{1}{2}^\circ per minute, and the rate the minute hand moves is R_M=\frac{360}{60}=6^\circ per minute.

The time is the distance divided by the rate,

    \begin{equation*}\frac{x}{6}=\frac{x-60}{\frac{1}{2}}\end{equation}

    \begin{equation*}\frac{x}{2}=6x-360\end{equation}

    \begin{equation*}360=\frac{11x}{2}\end{equation}

    \begin{equation*}x=65\frac{5}{11}^\circ\end{equation}

As the minute hand moves 65\frac{5}{11}^\circ, the change in time is 65\frac{5}{11}^\circ \div 6=10 minutes and 54 seconds. Hence the time is 2:11pm

Leave a Comment

Filed under Finding an angle, Geometry, Puzzles

Area Problem

Two rectangular garden beds have a combined area of 40m^2. The larger bed has twice the perimeter of the smaller and the larger side of the smaller bed is equal to the smaller side of the larger bed. If the two beds are not similar, and if all edges are a whole number of metres, what is the length, in metres, of the longer side of the larger bed?
AMC 2007 S.14

Let’s draw a diagram

From the information in the question, we know

(1)   \begin{equation*}xy+xz=40\end{equation*}

and

    \begin{equation*}2x+2y=4x+4z\end{equation}

    \begin{equation*}x+y=2x+2z\end{equation}

    \begin{equation*}x+y=2x+2z\end{equation}

(2)   \begin{equation*}y=x+2z\end{equation*}

Equation 1 becomes

    \begin{equation*}x(x+3z)=40\end{equation}

As the sides are whole numbers, consider the factors of 40.

1, 2, 4, 5, 8, 10, 20, 40

Remember z<x<y

xx+3zzyPerimeter LargePerimeter SmallComment
2206x must be greater than z
410282(4+8)=242(2+4)=12This one works
58172(5+7)=242(5+1)=12This one also works
810\frac{2}{3}z not a whole number
104z<0Not possible
202z<0
Not possible
401z<0Not possible

There are two possibilities

The large garden bed could be 4 by 8 and the smaller 4 by 2 (Area 40 Perimeters 24 and 12)

or

The large garden bed could be 5 by 7 and the smaller 5 by 1 (Area 40 Perimeters 24 and 12)

Leave a Comment

Filed under Area, Interesting Mathematics, Measurement, Puzzles, Solving Equations, Year 8 Mathematics

Matrices -Linear Transformations (Rotation)

We are going to find a matrix to rotate a point about the origin a number of degrees (or radians).

We want to find P'(c, d)

P and P' are equidistant from the origin. I.e. \sqrt{c^2+d^2}=\sqrt{a^2+b^2}

Remember, anti-clockwise angles are positive.

    \begin{equation*}cos(\theta+\alpha)=\frac{c}{\sqrt{c^2+d^2}}\end{equation}

    \begin{equation*}c=\sqrt{a^2+b^2}cos(\theta+\alpha)\end{equation}

Use the cosine addition identity.

    \begin{equation*}c=\sqrt{a^2+b^2}(cos(\theta)cos(\alpha)-sin(\theta)sin(\alpha))\end{equation}

    \begin{equation*}c=\sqrt{a^2+b^2}(cos(\theta)\frac{a}{\sqrt{a^2+b^2}}-sin(\theta)\frac{b}{\sqrt{a^2+b^2}})\end{equation}

(1)   \begin{equation*}c=acos(\theta)-bsin(\theta)\end{equation*}

We will do the same for d

    \begin{equation*}sin(\theta+\alpha)=\frac{d}{\sqrt{a^2+b^2}}\end{equation}

    \begin{equation*}d=\sqrt{a^2+b^2}sin(\theta+\alpha)\end{equation}

Use the sine addition identity.

    \begin{equation*}d=\sqrt{a^2+b^2}(sin(\theta)cos(\alpha)+cos(\theta)sin(\alpha)\end{equation}

    \begin{equation*}d=\sqrt{a^2+b^2}(sin(\theta)\frac{a}{\sqrt{a^2+b^2}}+cos(\theta)\frac{b}{\sqrt{a^2+b^2}})\end{equation}

(2)   \begin{equation*}d=asin(\theta)+bcos(\theta)\end{equation*}

Let R be the rotation matrix, then

    \begin{equation*}R\begin{bmatrix}a\\b\end{bmatrix}=\begin{bmatrix}acos(\theta)-bsin(\theta)\\asin(\theta)+bcos(\theta)\end{bmatrix}\end{equation}

Hence R must be

(3)   \begin{equation*}R=\begin{bmatrix}cos(\theta)&-sin(\theta)\\sin(\theta)&cos(\theta)\end{bmatrix}\end{equation*}

Example

Find the image of the line y=x+1 after it is rotated 60^\circ about the origin.

I am going to select two points on the line and transform them.

    \begin{equation*}\begin{bmatrix}cos(60)&-sin(60)\\sin(60)&cos(60)\end{bmatrix}\begin{bmatrix}0&4\\1&5\end{bmatrix}=\begin{bmatrix}x'_1&x'_2\\y'_1&y'_2\end{bmatrix}\end{equation}

    \begin{equation*}\begin{bmatrix}\frac{1}{2}&-\frac{\sqrt{3}}{2}\\\frac{\sqrt{3}}{2}&\frac{1}{2}\end{bmatrix}\begin{bmatrix}0&4\\1&5\end{bmatrix}=\begin{bmatrix}x'_1&x'_2\\y'_1&y'_2\end{bmatrix}\end{equation}

    \begin{equation*}\begin{bmatrix}-\frac{\sqrt{3}}{2}&\frac{4-5\sqrt{3}}{2}\\\frac{1}{2}&2\sqrt{3}+\frac{5}{2}\end{bmatrix}=\begin{bmatrix}x'_1&x'_2 \\y'_1&y'_2\end{bmatrix}\end{equation}

We can then find the equation of the line.

    \begin{equation*}m=\frac{2\sqrt{3}+\frac{5}{2}-\frac{1}{2}}{\frac{4-5\sqrt{3}+\sqrt{3}}{2}}\end{equation}

    \begin{equation*}m=-2-\sqrt{3}\end{equation}

    \begin{equation*}y-\frac{1}{2}=(-2-\sqrt{3})(x+\frac{\sqrt{3}}{2})\end{equation}

    \begin{equation*}y=(-2-\sqrt{3})x-1-\sqrt{3}\end{equation}

Leave a Comment

Filed under Addition and Subtraction Identities, Identities, Matrices, Transformations, Trigonometry, Year 11 Specialist Mathematics

Matrices – Linear Transformations (reflection in y=mx)

We are going to derive the transformation matrix for a reflection across a line y=mx.

Reflecting P across the line to P'

Things to remember about a reflection:

  • The distance between P' and the line is same as the distance between P and the line. Hence M is the midpoint of P and P'.
  • The line segment joining P and P' is perpendicular to the line.

Our aim is to find a general identity for P' and then use that to derive a transformation matrix.

Let’s start by finding the equation of the line joining P and P'.

We know the gradient of this line is perpendicular to the gradient of y=mx, hence the gradient is -\frac{1}{m}.

    \begin{equation*}y-y_0=-\frac{1}{m}(x-x_0)\end{equation}

And (a,b) is a point on the line.

    \begin{equation*}y-b=-\frac{1}{m}(x-a)\end{equation}

Which simplifies to

(1)   \begin{equation*}y=-\frac{1}{m}x+\frac{a+bm}{m}\end{equation*}

We are going to find the co-ordinates of M in two ways; as the midpoint of P and P', and as the point of intersection of y=mx and y=-\frac{1}{m}x+\frac{a+bm}{m}

As the midpoint of P and P'

(2)   \begin{equation*}M=(\frac{a+c}{2}, \frac{b+d}{2})\end{equation*}

As the point of intersection of y=mx and y=-\frac{1}{m}x+\frac{a+bm}{m}

    \begin{equation*}mx=-\frac{1}{m}x+\frac{a+bm}{m}\end{equation}

    \begin{equation*}mx+\frac{x}{m}=\frac{a+bm}{m}\end{equation}

    \begin{equation*}\frac{m^2x+x}{m}=\frac{a+bm}{m}\end{equation}

    \begin{equation*}x(m^2+1)=a+bm\end{equation}

    \begin{equation*}x=\frac{a+bm}{m^2+1}\end{equation}

Substitute x into y=mx

    \begin{equation*}y=\frac{am+bm^2}{m^2+1}\end{equation}

(3)   \begin{equation*}M=(\frac{a+bm}{m^2+1},\frac{am+bm^2}{m^2+1})\end{equation*}

M must equal M, hence we can find (c, d) in terms of (a, b)

Equate equation 2 and 3

    \begin{equation*}\frac{a+c}{2}=\frac{a+bm}{m^2+1}\end{equation}

    \begin{equation*}a+c=2(\frac{a+bm}{m^2+1})\end{equation}

    \begin{equation*}c=2(\frac{a+bm}{m^2+1})-a\end{equation}

    \begin{equation*}c=\frac{2a+2bm-am^2-a}{m^2+1}\end{equation}

    \begin{equation*}c=\frac{a+2bm-am^2}{m^2+1}\end{equation}

(4)   \begin{equation*}c=\frac{1-m^2}{m^2+1}a+\frac{2m}{m^2+1}b\end{equation*}

And

    \begin{equation*}\frac{b+d}{2}=\frac{am+bm^2}{m^2+1}\end{equation}

    \begin{equation*}b+d=2(\frac{am+bm^2}{m^2+1})\end{equation}

    \begin{equation*}d=2(\frac{am+bm^2}{m^2+1})-b\end{equation}

    \begin{equation*}d=\frac{2am+2bm^2-bm^2-b}{m^2+1}\end{equation}

    \begin{equation*}d=\frac{2m}{m^2+1}a+\frac{m^2-1}{m^2+1}b\end{equation}

    \begin{equation*}d=\frac{2m}{m^2+1}a-\frac{-m^2+1}{m^2+1}b\end{equation}

(5)   \begin{equation*}d=\frac{2m}{m^2+1}a-\frac{1-m^2}{m^2+1}b\end{equation*}

Hence P'=(\frac{1-m^2}{m^2+1}a+\frac{2m}{m^2+1}b, \frac{2m}{m^2+1}a-\frac{1-m^2}{m^2+1}b)

For ease of writing, let p=\frac{1-m^2}{m^2+1} and q=\frac{2m}{m^2+1}

Then

P'=(pa+qb, qa-px), which we can generalise to (px+qy, qx-py)

Now let’s think about a transformation matrix, we want to transform (x, y) to (px+qy, qx-py)

    \begin{equation*}\begin{bmatrix}p&q\\q &-p\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix}=\begin{bmatrix}px+qy\\qx-py\end{bmatrix}\end{equation}

Remember the gradient of a line is the tangent of the angle of inclination, tan(\theta)=m

    \begin{equation*}p=\frac{1-m^2}{m^2+1}=\frac{1-tan^2(\theta)}{tan^2(\theta)+1}\end{equation}

Remember the identity

    \begin{equation*}tan^2(\theta)+1=sec^2(\theta)\end{equation}

    \begin{equation*}p=\frac{1-(sec^2(\theta)-1)}{sec^2(\theta)}\end{equation}

    \begin{equation*}p=\frac{2-sec^2(\theta)}{sec^2(\theta)}\end{equation}

    \begin{equation*}p=\frac{2}{sec^2(\theta)}-\frac{sec^2(\theta)}{sec^2(\theta)}\end{equation}

    \begin{equation*}p=2cos^2(\theta)-1\end{equation}

(6)   \begin{equation*}p=cos(2\theta)\end{equation*}

And we will do the same for q.

    \begin{equation*}q=\frac{2m}{m^2+1}=\frac{2tan(\theta)}{tan^2(\theta)+1}\end{equation}

    \begin{equation*}q=\frac{\frac{2sin(\theta)}{cos(\theta)}}{sec^2(\theta)}\end{equation}

    \begin{equation*}q=\frac{2sin(\theta)}{cos(\theta)} \times cos^2(\theta)\end{equation}

    \begin{equation*}q=2sin(\theta)cos(\theta)\end{equation}

(7)   \begin{equation*}q=sin(2\theta)\end{equation*}

Hence our transformation matrix is

(8)   \begin{equation*}\begin{bmatrix}cos(2\theta)&sin(2\theta)\\sin(2\theta)&-cos(2\theta)\end{bmatrix}\end{equation*}

Example

The vertices of a triangle T are A(-3, 1), B(6, -4) and C(1, 5). T' is a reflection of T in the line y-x=0

The gradient of the line y=x is 1.

    \begin{equation*}tan(\theta)=1\end{equation}

    \begin{equation*}\theta=\frac{\pi}{4}\end{equation}

Our transformation matrix is

    \begin{equation*}\begin{bmatrix}cos(\frac{\pi}{2})&sin\frac{\pi}{2})\\sin\frac{\pi}{2})&-cos(\frac{\pi}{2})\end{bmatrix}\end{equation}

Which is

    \begin{equation*}\begin{bmatrix}0&1\\1&0\end{bmatrix}\end{equation}

So

    \begin{equation*}T'=\begin{bmatrix}0&1\\1&0\end{bmatrix}\begin{bmatrix}-3&6&1\\1&-4&5\end{bmatrix}\end{equation}

    \begin{equation*}T'=\begin{bmatrix}1&-4&5\\-3&6&1\end{bmatrix}\end{equation}

Leave a Comment

Filed under Matrices, Transformations

Trig Identities and Exact Values

My Year 11 Specialist Mathematics students are working on Trig identities. We came across this question

Without the use of a calculator, evaluate
(a) cos20^\circ\times cos40^\circ\times cos80^\circ

(b)cos(\frac{\pi}{7})\times cos(\frac{2\pi}{7})\times cos(\frac{4\pi}{7})

OT Lee Year 11 Specialist Mathematics textbook

I spent a bit of time thinking about the question. Can you use a product to sum identity twice? But I was always being left with an angle that doesn’t have a nice exact value.

I tried a few things, had a chat to Meta AI, and finally stumbled upon this method.

Remember

    \begin{equation*}sin(2x)=2sin(x)cos(x)\end{equation}

Which can be rearranged to

    \begin{equation*}cos(x)=\frac{sin(2x)}{sin(x)}\end{equation}

(a) cos20^\circ\times cos40^\circ\times cos80^\circ=\frac{sin(40)}{2sin(20)}\frac{sin(80)}{2sin(40)}\frac{sin(160)}{2sin(80)}

Which simplifies to

    \begin{equation*}\frac{sin(160)}{8sin(20)}\end{equation}

Now sin(160)=sin(20)

Hence cos20^\circ\times cos40^\circ\times cos80^\circ=\frac{1}{8}

And we will do the same for part (b)

cos(\frac{\pi}{7})\times cos(\frac{2\pi}{7})\times cos(\frac{4\pi}{7})=\frac{sin(\frac{2\pi}{7})}{2sin(\frac{\pi}{7})}\frac{sin(\frac{4\pi}{7})}{2sin(\frac{2\pi}{7})}\frac{sin(\frac{8\pi}{7})}{2sin(\frac{4\pi}{7})}

Which simplifies to

cos(\frac{\pi}{7})\times cos(\frac{2\pi}{7})\times cos(\frac{4\pi}{7})=\frac{sin(\frac{8\pi}{7})}{8sin(\frac{\pi}{7})}

Now sin(\frac{8\pi}{7})=-sin(\frac{\pi}{7})

Hence cos(\frac{\pi}{7})\times cos(\frac{2\pi}{7})\times cos(\frac{4\pi}{7})=\frac{-1}{8}

And then I had to test them on my Classpad.

Leave a Comment

Filed under Classpad Skills, Identities, Simplifying fractions, Trigonometry, Year 11 Specialist Mathematics

Trigonometric Identities – Product to Sum

Let’s think about the sine and cosine addition and subtraction trig identities.

(1)   \begin{equation*}sin(A+B)=sinAcosB+cosAsinB\end{equation*}

(2)   \begin{equation*}sin(A-B)=sinAcosB-cosAsinB\end{equation*}

If we add equation 1 and 2, we get

    \begin{equation*}sin(A+B)+sin(A-B)=2sinAcosB\end{equation}

Hence, sinAcosB=\frac{1}{2}(sin(A+B)+sin(A-B))

If we subtract equation 2 from equation 1, we get

    \begin{equation*}sin(A+B)-sin(A-B)=2cosAsinB\end{equation}

Hence, cosAsinB=\frac{1}{2}(sin(A+B)-sin(A-B)

What about the cosine addition and subtraction idenities?

(3)   \begin{equation*}cos(A+B)=cosAcosB-sinAsinB\end{equation*}

(4)   \begin{equation*}cos(A-B)=cosAcosB+sinAsinB\end{equation*}

If we add equation 3 and 4, we get

    \begin{equation*}cos(A+B)+cos(A-B)=2cosAcosB\end{equation}

Hence, cosAcosB=\frac{1}{2}(cos(A+B)+cos(A-B))

If we subtract 3 from 4, we get

    \begin{equation*}cos(A-B)-cos(A+B)=2sinAsinB\end{equation}

Hence, sinAsinB=\frac{1}{2}(cos(A-B)-cos(A+B))

These are the product to sum identities.

    \begin{equation*}sinAcosB=\frac{1}{2}(sin(A+B)+sin(A-B))\end{equation}


    \begin{equation*}cosAsinB=\frac{1}{2}(sin(A+B)-sin(A-B))\end{equation}


    \begin{equation*}cosAcosB=\frac{1}{2}(cos(A+B)+cos(A-B))\end{equation}


    \begin{equation*}sinAsinB=\frac{1}{2}(cos(A-B)-cos(A+B))\end{equation}

Examples

(1) Solve sin(5x)-sin(x)=0 for 0\le x \le 2\pi

Remember,

    \begin{equation*}cosAsinB=\frac{1}{2}(sin(A+B)-sin(A-B))\end{equation}

    \begin{equation*}A+B=5\end{equation}

    \begin{equation*}A-B=1\end{equation}

Therefore, A=3 and B=2

    \begin{equation*}sin(5x)-sin(x)=2cos(3x)sin(2x)=0\end{equation}

    \begin{equation*}cos(3x)=0\end{equation}

    \begin{equation*}3x=\frac{\pi}{2},\frac{3\pi}{2}, \frac{5\pi}{2}, \frac{7\pi}{2}, \frac{\9\pi}{2}, \frac{11\pi}{2}\end{equation}

    \begin{equation*}x=\frac{\pi}{6}, \frac{\pi}{2}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{3\pi}{2}, \frac{11\pi}{6}\end{equation}

    \begin{equation*}sin(2x)=0\end{equation}

    \begin{equation*}2x=0, \pi, 2\pi, 3\pi, 4\pi\end{equation}

    \begin{equation*}x=0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi\end{equation}

Hence x=0, \frac{\pi}{6}. \frac{\pi}{2}, \frac{5\pi}{6}, \pi, \frac{7\pi}{6}, \frac{3\pi}{2}, \frac{11\pi}{6}, 2\pi

(2)Solve sin(7\theta)-sin(\theta)=sin(3\theta) for 0 \le \theta \le\2\pi

    \begin{equation*}cosAsinB=\frac{1}{2}(sin(A+B)-sin(A-B))\end{equation}

Therefore, A+B=7 and A-B=1

A=4, B=3

    \begin{equation*}2cos(4\theta)sin(3\theta)=sin(3\theta)\end{equation}

    \begin{equation*}2cos(4\theta)sin(3\theta)-sin(3\theta)=0\end{equation}

    \begin{equation*}sin(3\theta)(2cos(4\theta)-1)=0\end{equation}

sin(3\theta)=0 and cos(4\theta)=\frac{1}{2}

3\theta=0, \pi, 2\pi, 3\pi, 4\pi, 5\pi, 6\pi

\theta=0, \frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3}. 2\pi

cos(4\theta)=\frac{1}{2}

4\theta=\frac{\pi}{3}, \frac{5\pi}{3}, \frac{7\pi}{3}, \frac{11\pi}{3}, \frac{13\pi}{3}, \frac{17\pi}{3}, \frac{19\pi}{3}, \frac{23\pi}{3}

\theta=\frac{\pi}{12}, \frac{5\pi}{12}, \frac{7\pi}{12}, \frac{11\pi}{12}, \frac{13\pi}{12}, \frac{17\pi}{12}, \frac{19\pi}{12}, \frac{23\pi}{12}

Hence \theta=0, \frac{\pi}{3}, \frac{5\pi}{12}, \frac{7\pi}{12}, \frac{11\pi}{12}, \frac{13\pi}{12}, \frac{17\pi}{12}, \frac{5\pi}{3}, \frac{23\pi}{12}, 2\pi

Leave a Comment

Filed under Addition and Subtraction Identities, Identities, Product to Sum idenitites, Trigonometry

Trigonometric Exact Value

Using an appropriate double angle identity, find the exact value of
cos(\frac{\pi}{12})

The double angle identity for sine is

(1)   \begin{equation*}cos(2A)=cos^2A-sin^2A=2cos^2A-1=1-2sin^2A\end{equation*}

That means \frac{\pi}{12} is either 2A or A.

It must be A as 2\times\frac{\pi}{12}=\frac{\pi}{6} as there are exact values for \frac{\pi}{6}

Hence,

    \begin{equation*}cos{\frac{\pi}{6}}=2cos^2{\frac{\pi}{12}}-1\end{equation}

    \begin{equation*}\frac{\sqrt{3}}{2}=2cos^2{\frac{\pi}{12}}-1\end{equation}

    \begin{equation*}\frac{\sqrt{3}}{2}+1=2cos^2{\frac{\pi}{12}}\end{equation}

    \begin{equation*}\frac{\frac{\sqrt{3}}{2}+1}{2}=cos^2{\frac{\pi}{12}}\end{equation}

    \begin{equation*}\frac{\sqrt{3}+2}{4}=cos^2{\frac{\pi}{12}}\end{equation}

    \begin{equation*}\sqrt{\frac{\sqrt{3}+2}{4}}=cos{\frac{\pi}{12}}\end{equation}

As \frac{\pi}{12} is in the first quadrant, we don’t need to consider the negative version.

    \begin{equation*}cos(\frac{\pi}{12})=\frac{\sqrt{3}+2}{2}\end{equation}

Leave a Comment

Filed under Algebra, Identities, Trigonometry, Year 11 Mathematical Methods