Category Archives: Product to Sum idenitites

Trigonometric Identities – Product to Sum

Let’s think about the sine and cosine addition and subtraction trig identities.

(1)   \begin{equation*}sin(A+B)=sinAcosB+cosAsinB\end{equation*}

(2)   \begin{equation*}sin(A-B)=sinAcosB-cosAsinB\end{equation*}

If we add equation 1 and 2, we get

    \begin{equation*}sin(A+B)+sin(A-B)=2sinAcosB\end{equation}

Hence, sinAcosB=\frac{1}{2}(sin(A+B)+sin(A-B))

If we subtract equation 2 from equation 1, we get

    \begin{equation*}sin(A+B)-sin(A-B)=2cosAsinB\end{equation}

Hence, cosAsinB=\frac{1}{2}(sin(A+B)-sin(A-B)

What about the cosine addition and subtraction idenities?

(3)   \begin{equation*}cos(A+B)=cosAcosB-sinAsinB\end{equation*}

(4)   \begin{equation*}cos(A-B)=cosAcosB+sinAsinB\end{equation*}

If we add equation 3 and 4, we get

    \begin{equation*}cos(A+B)+cos(A-B)=2cosAcosB\end{equation}

Hence, cosAcosB=\frac{1}{2}(cos(A+B)+cos(A-B))

If we subtract 3 from 4, we get

    \begin{equation*}cos(A-B)-cos(A+B)=2sinAsinB\end{equation}

Hence, sinAsinB=\frac{1}{2}(cos(A-B)-cos(A+B))

These are the product to sum identities.

    \begin{equation*}sinAcosB=\frac{1}{2}(sin(A+B)+sin(A-B))\end{equation}


    \begin{equation*}cosAsinB=\frac{1}{2}(sin(A+B)-sin(A-B))\end{equation}


    \begin{equation*}cosAcosB=\frac{1}{2}(cos(A+B)+cos(A-B))\end{equation}


    \begin{equation*}sinAsinB=\frac{1}{2}(cos(A-B)-cos(A+B))\end{equation}

Examples

(1) Solve sin(5x)-sin(x)=0 for 0\le x \le 2\pi

Remember,

    \begin{equation*}cosAsinB=\frac{1}{2}(sin(A+B)-sin(A-B))\end{equation}

    \begin{equation*}A+B=5\end{equation}

    \begin{equation*}A-B=1\end{equation}

Therefore, A=3 and B=2

    \begin{equation*}sin(5x)-sin(x)=2cos(3x)sin(2x)=0\end{equation}

    \begin{equation*}cos(3x)=0\end{equation}

    \begin{equation*}3x=\frac{\pi}{2},\frac{3\pi}{2}, \frac{5\pi}{2}, \frac{7\pi}{2}, \frac{\9\pi}{2}, \frac{11\pi}{2}\end{equation}

    \begin{equation*}x=\frac{\pi}{6}, \frac{\pi}{2}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{3\pi}{2}, \frac{11\pi}{6}\end{equation}

    \begin{equation*}sin(2x)=0\end{equation}

    \begin{equation*}2x=0, \pi, 2\pi, 3\pi, 4\pi\end{equation}

    \begin{equation*}x=0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi\end{equation}

Hence x=0, \frac{\pi}{6}. \frac{\pi}{2}, \frac{5\pi}{6}, \pi, \frac{7\pi}{6}, \frac{3\pi}{2}, \frac{11\pi}{6}, 2\pi

(2)Solve sin(7\theta)-sin(\theta)=sin(3\theta) for 0 \le \theta \le\2\pi

    \begin{equation*}cosAsinB=\frac{1}{2}(sin(A+B)-sin(A-B))\end{equation}

Therefore, A+B=7 and A-B=1

A=4, B=3

    \begin{equation*}2cos(4\theta)sin(3\theta)=sin(3\theta)\end{equation}

    \begin{equation*}2cos(4\theta)sin(3\theta)-sin(3\theta)=0\end{equation}

    \begin{equation*}sin(3\theta)(2cos(4\theta)-1)=0\end{equation}

sin(3\theta)=0 and cos(4\theta)=\frac{1}{2}

3\theta=0, \pi, 2\pi, 3\pi, 4\pi, 5\pi, 6\pi

\theta=0, \frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3}. 2\pi

cos(4\theta)=\frac{1}{2}

4\theta=\frac{\pi}{3}, \frac{5\pi}{3}, \frac{7\pi}{3}, \frac{11\pi}{3}, \frac{13\pi}{3}, \frac{17\pi}{3}, \frac{19\pi}{3}, \frac{23\pi}{3}

\theta=\frac{\pi}{12}, \frac{5\pi}{12}, \frac{7\pi}{12}, \frac{11\pi}{12}, \frac{13\pi}{12}, \frac{17\pi}{12}, \frac{19\pi}{12}, \frac{23\pi}{12}

Hence \theta=0, \frac{\pi}{3}, \frac{5\pi}{12}, \frac{7\pi}{12}, \frac{11\pi}{12}, \frac{13\pi}{12}, \frac{17\pi}{12}, \frac{5\pi}{3}, \frac{23\pi}{12}, 2\pi

Leave a Comment

Filed under Addition and Subtraction Identities, Identities, Product to Sum idenitites, Trigonometry