Category Archives: Trigonometry

Matrices -Linear Transformations (Rotation)

We are going to find a matrix to rotate a point about the origin a number of degrees (or radians).

We want to find P'(c, d)

P and P' are equidistant from the origin. I.e. \sqrt{c^2+d^2}=\sqrt{a^2+b^2}

Remember, anti-clockwise angles are positive.

    \begin{equation*}cos(\theta+\alpha)=\frac{c}{\sqrt{c^2+d^2}}\end{equation}

    \begin{equation*}c=\sqrt{a^2+b^2}cos(\theta+\alpha)\end{equation}

Use the cosine addition identity.

    \begin{equation*}c=\sqrt{a^2+b^2}(cos(\theta)cos(\alpha)-sin(\theta)sin(\alpha))\end{equation}

    \begin{equation*}c=\sqrt{a^2+b^2}(cos(\theta)\frac{a}{\sqrt{a^2+b^2}}-sin(\theta)\frac{b}{\sqrt{a^2+b^2}})\end{equation}

(1)   \begin{equation*}c=acos(\theta)-bsin(\theta)\end{equation*}

We will do the same for d

    \begin{equation*}sin(\theta+\alpha)=\frac{d}{\sqrt{a^2+b^2}}\end{equation}

    \begin{equation*}d=\sqrt{a^2+b^2}sin(\theta+\alpha)\end{equation}

Use the sine addition identity.

    \begin{equation*}d=\sqrt{a^2+b^2}(sin(\theta)cos(\alpha)+cos(\theta)sin(\alpha)\end{equation}

    \begin{equation*}d=\sqrt{a^2+b^2}(sin(\theta)\frac{a}{\sqrt{a^2+b^2}}+cos(\theta)\frac{b}{\sqrt{a^2+b^2}})\end{equation}

(2)   \begin{equation*}d=asin(\theta)+bcos(\theta)\end{equation*}

Let R be the rotation matrix, then

    \begin{equation*}R\begin{bmatrix}a\\b\end{bmatrix}=\begin{bmatrix}acos(\theta)-bsin(\theta)\\asin(\theta)+bcos(\theta)\end{bmatrix}\end{equation}

Hence R must be

(3)   \begin{equation*}R=\begin{bmatrix}cos(\theta)&-sin(\theta)\\sin(\theta)&cos(\theta)\end{bmatrix}\end{equation*}

Example

Find the image of the line y=x+1 after it is rotated 60^\circ about the origin.

I am going to select two points on the line and transform them.

    \begin{equation*}\begin{bmatrix}cos(60)&-sin(60)\\sin(60)&cos(60)\end{bmatrix}\begin{bmatrix}0&4\\1&5\end{bmatrix}=\begin{bmatrix}x'_1&x'_2\\y'_1&y'_2\end{bmatrix}\end{equation}

    \begin{equation*}\begin{bmatrix}\frac{1}{2}&-\frac{\sqrt{3}}{2}\\\frac{\sqrt{3}}{2}&\frac{1}{2}\end{bmatrix}\begin{bmatrix}0&4\\1&5\end{bmatrix}=\begin{bmatrix}x'_1&x'_2\\y'_1&y'_2\end{bmatrix}\end{equation}

    \begin{equation*}\begin{bmatrix}-\frac{\sqrt{3}}{2}&\frac{4-5\sqrt{3}}{2}\\\frac{1}{2}&2\sqrt{3}+\frac{5}{2}\end{bmatrix}=\begin{bmatrix}x'_1&x'_2 \\y'_1&y'_2\end{bmatrix}\end{equation}

We can then find the equation of the line.

    \begin{equation*}m=\frac{2\sqrt{3}+\frac{5}{2}-\frac{1}{2}}{\frac{4-5\sqrt{3}+\sqrt{3}}{2}}\end{equation}

    \begin{equation*}m=-2-\sqrt{3}\end{equation}

    \begin{equation*}y-\frac{1}{2}=(-2-\sqrt{3})(x+\frac{\sqrt{3}}{2})\end{equation}

    \begin{equation*}y=(-2-\sqrt{3})x-1-\sqrt{3}\end{equation}

Leave a Comment

Filed under Addition and Subtraction Identities, Identities, Matrices, Transformations, Trigonometry, Year 11 Specialist Mathematics

Trig Identities and Exact Values

My Year 11 Specialist Mathematics students are working on Trig identities. We came across this question

Without the use of a calculator, evaluate
(a) cos20^\circ\times cos40^\circ\times cos80^\circ

(b)cos(\frac{\pi}{7})\times cos(\frac{2\pi}{7})\times cos(\frac{4\pi}{7})

OT Lee Year 11 Specialist Mathematics textbook

I spent a bit of time thinking about the question. Can you use a product to sum identity twice? But I was always being left with an angle that doesn’t have a nice exact value.

I tried a few things, had a chat to Meta AI, and finally stumbled upon this method.

Remember

    \begin{equation*}sin(2x)=2sin(x)cos(x)\end{equation}

Which can be rearranged to

    \begin{equation*}cos(x)=\frac{sin(2x)}{sin(x)}\end{equation}

(a) cos20^\circ\times cos40^\circ\times cos80^\circ=\frac{sin(40)}{2sin(20)}\frac{sin(80)}{2sin(40)}\frac{sin(160)}{2sin(80)}

Which simplifies to

    \begin{equation*}\frac{sin(160)}{8sin(20)}\end{equation}

Now sin(160)=sin(20)

Hence cos20^\circ\times cos40^\circ\times cos80^\circ=\frac{1}{8}

And we will do the same for part (b)

cos(\frac{\pi}{7})\times cos(\frac{2\pi}{7})\times cos(\frac{4\pi}{7})=\frac{sin(\frac{2\pi}{7})}{2sin(\frac{\pi}{7})}\frac{sin(\frac{4\pi}{7})}{2sin(\frac{2\pi}{7})}\frac{sin(\frac{8\pi}{7})}{2sin(\frac{4\pi}{7})}

Which simplifies to

cos(\frac{\pi}{7})\times cos(\frac{2\pi}{7})\times cos(\frac{4\pi}{7})=\frac{sin(\frac{8\pi}{7})}{8sin(\frac{\pi}{7})}

Now sin(\frac{8\pi}{7})=-sin(\frac{\pi}{7})

Hence cos(\frac{\pi}{7})\times cos(\frac{2\pi}{7})\times cos(\frac{4\pi}{7})=\frac{-1}{8}

And then I had to test them on my Classpad.

Leave a Comment

Filed under Classpad Skills, Identities, Simplifying fractions, Trigonometry, Year 11 Specialist Mathematics

Trigonometric Identities – Product to Sum

Let’s think about the sine and cosine addition and subtraction trig identities.

(1)   \begin{equation*}sin(A+B)=sinAcosB+cosAsinB\end{equation*}

(2)   \begin{equation*}sin(A-B)=sinAcosB-cosAsinB\end{equation*}

If we add equation 1 and 2, we get

    \begin{equation*}sin(A+B)+sin(A-B)=2sinAcosB\end{equation}

Hence, sinAcosB=\frac{1}{2}(sin(A+B)+sin(A-B))

If we subtract equation 2 from equation 1, we get

    \begin{equation*}sin(A+B)-sin(A-B)=2cosAsinB\end{equation}

Hence, cosAsinB=\frac{1}{2}(sin(A+B)-sin(A-B)

What about the cosine addition and subtraction idenities?

(3)   \begin{equation*}cos(A+B)=cosAcosB-sinAsinB\end{equation*}

(4)   \begin{equation*}cos(A-B)=cosAcosB+sinAsinB\end{equation*}

If we add equation 3 and 4, we get

    \begin{equation*}cos(A+B)+cos(A-B)=2cosAcosB\end{equation}

Hence, cosAcosB=\frac{1}{2}(cos(A+B)+cos(A-B))

If we subtract 3 from 4, we get

    \begin{equation*}cos(A-B)-cos(A+B)=2sinAsinB\end{equation}

Hence, sinAsinB=\frac{1}{2}(cos(A-B)-cos(A+B))

These are the product to sum identities.

    \begin{equation*}sinAcosB=\frac{1}{2}(sin(A+B)+sin(A-B))\end{equation}


    \begin{equation*}cosAsinB=\frac{1}{2}(sin(A+B)-sin(A-B))\end{equation}


    \begin{equation*}cosAcosB=\frac{1}{2}(cos(A+B)+cos(A-B))\end{equation}


    \begin{equation*}sinAsinB=\frac{1}{2}(cos(A-B)-cos(A+B))\end{equation}

Examples

(1) Solve sin(5x)-sin(x)=0 for 0\le x \le 2\pi

Remember,

    \begin{equation*}cosAsinB=\frac{1}{2}(sin(A+B)-sin(A-B))\end{equation}

    \begin{equation*}A+B=5\end{equation}

    \begin{equation*}A-B=1\end{equation}

Therefore, A=3 and B=2

    \begin{equation*}sin(5x)-sin(x)=2cos(3x)sin(2x)=0\end{equation}

    \begin{equation*}cos(3x)=0\end{equation}

    \begin{equation*}3x=\frac{\pi}{2},\frac{3\pi}{2}, \frac{5\pi}{2}, \frac{7\pi}{2}, \frac{\9\pi}{2}, \frac{11\pi}{2}\end{equation}

    \begin{equation*}x=\frac{\pi}{6}, \frac{\pi}{2}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{3\pi}{2}, \frac{11\pi}{6}\end{equation}

    \begin{equation*}sin(2x)=0\end{equation}

    \begin{equation*}2x=0, \pi, 2\pi, 3\pi, 4\pi\end{equation}

    \begin{equation*}x=0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi\end{equation}

Hence x=0, \frac{\pi}{6}. \frac{\pi}{2}, \frac{5\pi}{6}, \pi, \frac{7\pi}{6}, \frac{3\pi}{2}, \frac{11\pi}{6}, 2\pi

(2)Solve sin(7\theta)-sin(\theta)=sin(3\theta) for 0 \le \theta \le\2\pi

    \begin{equation*}cosAsinB=\frac{1}{2}(sin(A+B)-sin(A-B))\end{equation}

Therefore, A+B=7 and A-B=1

A=4, B=3

    \begin{equation*}2cos(4\theta)sin(3\theta)=sin(3\theta)\end{equation}

    \begin{equation*}2cos(4\theta)sin(3\theta)-sin(3\theta)=0\end{equation}

    \begin{equation*}sin(3\theta)(2cos(4\theta)-1)=0\end{equation}

sin(3\theta)=0 and cos(4\theta)=\frac{1}{2}

3\theta=0, \pi, 2\pi, 3\pi, 4\pi, 5\pi, 6\pi

\theta=0, \frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3}. 2\pi

cos(4\theta)=\frac{1}{2}

4\theta=\frac{\pi}{3}, \frac{5\pi}{3}, \frac{7\pi}{3}, \frac{11\pi}{3}, \frac{13\pi}{3}, \frac{17\pi}{3}, \frac{19\pi}{3}, \frac{23\pi}{3}

\theta=\frac{\pi}{12}, \frac{5\pi}{12}, \frac{7\pi}{12}, \frac{11\pi}{12}, \frac{13\pi}{12}, \frac{17\pi}{12}, \frac{19\pi}{12}, \frac{23\pi}{12}

Hence \theta=0, \frac{\pi}{3}, \frac{5\pi}{12}, \frac{7\pi}{12}, \frac{11\pi}{12}, \frac{13\pi}{12}, \frac{17\pi}{12}, \frac{5\pi}{3}, \frac{23\pi}{12}, 2\pi

Leave a Comment

Filed under Addition and Subtraction Identities, Identities, Product to Sum idenitites, Trigonometry

Trigonometric Exact Value

Using an appropriate double angle identity, find the exact value of
cos(\frac{\pi}{12})

The double angle identity for sine is

(1)   \begin{equation*}cos(2A)=cos^2A-sin^2A=2cos^2A-1=1-2sin^2A\end{equation*}

That means \frac{\pi}{12} is either 2A or A.

It must be A as 2\times\frac{\pi}{12}=\frac{\pi}{6} as there are exact values for \frac{\pi}{6}

Hence,

    \begin{equation*}cos{\frac{\pi}{6}}=2cos^2{\frac{\pi}{12}}-1\end{equation}

    \begin{equation*}\frac{\sqrt{3}}{2}=2cos^2{\frac{\pi}{12}}-1\end{equation}

    \begin{equation*}\frac{\sqrt{3}}{2}+1=2cos^2{\frac{\pi}{12}}\end{equation}

    \begin{equation*}\frac{\frac{\sqrt{3}}{2}+1}{2}=cos^2{\frac{\pi}{12}}\end{equation}

    \begin{equation*}\frac{\sqrt{3}+2}{4}=cos^2{\frac{\pi}{12}}\end{equation}

    \begin{equation*}\sqrt{\frac{\sqrt{3}+2}{4}}=cos{\frac{\pi}{12}}\end{equation}

As \frac{\pi}{12} is in the first quadrant, we don’t need to consider the negative version.

    \begin{equation*}cos(\frac{\pi}{12})=\frac{\sqrt{3}+2}{2}\end{equation}

Leave a Comment

Filed under Algebra, Identities, Trigonometry, Year 11 Mathematical Methods

Trig Identities – Addition and Subtraction

Deriving the addition and subtraction trigonometric identities.

We will start with cosine, and use the result to derive the remaining identities.

Proving cos(A-B)=cos(A)cos(B)+sin(A)(sin(B).

A and B are represented in the unit circle below.

Remember P(x_1,y_1)=(cos(A), sin(A)) and Q(x_2, y_2)=(cos(B), sin(B))

Using the cosine rule and triangle OPQ, find PQ

    \begin{equation*}(PQ)^2=1^2+1^2-2(1)(1)cos(A-B)\end{equation}

    \begin{equation*}(PQ)^2=2-2cos(A-B)\end{equation}

Using the distance between points, find PQ

    \begin{equation*}(PQ)^2=(x_1-x_2)^2+(y_1-y_2)^2\end{equation}

    \begin{equation*}(PQ)^2=(cosA-cosB)^2+(sinA-sinB)^2\end{equation}

(PQ)^2=cos^2A-2cosAcosB+cos^2B+sin^2A-2sinAsinB+sin^2B

Remember the Pythagorean identity

    \begin{equation*}cos^2\theta+sin^2\theta=1\end{equation}

    \begin{equation*}(PQ)^2=2-2cosAcosB-2sinAsinB\end{equation}

Hence

    \begin{equation*}2-2cos(A-B)=2-2cosAcosB-2sinAsinB\end{equation}

(1)   \begin{equation*}cos(A-B)=cosAcosB+sinAsinB\end{equation*}

We can then use this identity to find cos(A+B).

    \begin{equation*}cos(A+B)=cos(A-(-B))\end{equation}

    \begin{equation*}cos(A-(-B))=cos(A)cos(-B)+sinAsin(-B)\end{equation}

Remember cos(-B)=cos(B) and sin(-B)=-sin(B)

    \begin{equation*}cos(A-(-B))=cosAcosB-sinAsinB\end{equation}

(2)   \begin{equation*}cos(A+B)=cosAcosB-sinAsinB\end{equation*}

We can also find sin(A+B)

Remember, sin\theta=cos(\frac{\pi}{2}-\theta)

    \begin{equation*}sin(A+B)=cos(\frac{\pi}{2}-(A+B))\end{equation}

    \begin{equation*}sin(A+B)=cos((\frac{\pi}{2}-A)-B)\end{equation}

    \begin{equation*}sin(A+B)=cos(\frac{\pi}{2}-A)cosB+sin(\frac{\pi}{2}-A)sinB\end{equation}

(3)   \begin{equation*}sin(A+B)=sinAcosB+cosAsinB\end{equation*}

We can use equation 2 to find sin(A-B)

    \begin{equation*}sin(A-B)=sin(A+(-B))\end{equation}

    \begin{equation*}sin(A+(-B))=sinAcos(-B)+cosAsin(-B)\end{equation}

    \begin{equation*}sin(A+(-B))=sinAcos(B)-cosAsin(B)\end{equation}

(4)   \begin{equation*}sin(A-B)=sinAcos(B)-cosAsin(B)\end{equation*}

And we can use both the sine and cosine identities to find tan(A+B)

Remember tan\theta=\frac{sin\theta}{cos\theta}

    \begin{equation*}tan(A+B)=\frac{sin(A+B)}{cos(A+B)}\end{equation}

    \begin{equation*}=\frac{sinAcosB+cosAsinB}{cosAcosB-sinAsinB}\end{equation}

    \begin{equation*}=\frac{sinAcosB+cosAsinB}{cosAcosB-sinAsinB}\times \frac{cosAcosB}{cosAcosB}\end{equation}

    \begin{equation*}=\frac{\frac{sinAcosB}{cosAcosB}+\frac{cosAsinB}{cosAcosB}}{\frac{cosAcosB}{cosAcosB}+\frac{sinAsinB}{cosAcosB}}\end{equation}

    \begin{equation*}=\frac{tanA+tanB}{1-tanAtanB}\end{equation}

(5)   \begin{equation*}tan(A+B)=\frac{tanA+tanB}{1-tanAtanB}\end{equation*}

and

(6)   \begin{equation*}tan(A-B)=\frac{tanA-tanB}{1+tanAtanB}\end{equation*}

    \begin{equation*}cos(A\pm B)=cosAcosB\mp sinAsinB\end{equation}


    \begin{equation*}sin(A\pm B)=sinAcosB\pm cosAsinB\end{equation}


    \begin{equation*}tan(A \pm B)=\frac{tan A \pm tanB}{1 \mp tanAtanB}\end{equation}

Leave a Comment

Filed under Addition and Subtraction Identities, Identities, Non-Right Trigonometry, Simplifying fractions, Trigonometry, Year 11 Mathematical Methods, Year 11 Specialist Mathematics

General Solutions to Trigonometric Equations

Solve sinx=\frac{1}{2} for 0\le x \le 2\pi

Sine is positive in the first and second quadrants.

    \begin{equation*}sinx=\frac{1}{2}\end{equation}

    \begin{equation*}x=\frac{\pi}{6} \text{ and } x=\pi-\frac{\pi}{6}=\frac{5\pi}{6}\end{equation}

But what if we aren’t given a domain for the x values?

Then we need to give general solutions.

For example,

Solve sinx=\frac{1}{2}

As you can see from the sketch above, there are infinite solutions.

The sine function has a period of 360^\circ, and so if \frac{\pi}{6} is a solution then \2pi+\frac{\pi}{6} is also a solution. This means \frac{\pi}{6}+2\pi n, n\in\mathbb{Z} is a general solution. And we can do the same for the second solution \frac{5\pi}{6}+2\pi n.

In general

    \begin{equation*}sinx=y\end{equation}


    \begin{equation*}x=arcsin(y)+2\pi n \text { and } x=\pi-arcsin(y)+2\pi n \end{equation}


    \begin{equation*}x=arcsin(y)+2\pi n \text { and } x=\pi(2n+1)-arcsin(y), n \in \mathbb{Z}\end{equation}


We can turn this into one equation

    \begin{equation*}x=(-1)^n arcsin(y)+n\pi, n \in \mathbb{Z}\end{equation}

What about cosine?

Solve cosx=\frac{1}{2}

Cosine is positive in the first and fourth quadrants (it also has a period of 2\pi. The first two (positive) solutions are \frac{\pi}{3} and 2\pi-\frac{\pi}{3}.

To generalise, x=2\pi n+\frac{\pi}{3} \text { and }x=2\pi n -\frac{\pi}{3}, which we can make into one equation x=2\pi n \pm \frac{pi}{3}

In general

    \begin{equation*}cosx=y\end{equation}

    \begin{equation*}x=2\pi n \pm arccos(y), n\in\mathbb{Z}\end{equation}

What about the tangent function? Remember tan has a period of \pi.

Solve tanx=\sqrt{3}

First, note that the solutions are all a common distance (\pi) apart.

Tan is positive in the first and the third quadrant

    \begin{equation*}tanx=\sqrt{3}\end{equation}

    \begin{equation*}x=\frac{\pi}{3} \text { and } x=\pi+\frac{\pi}{3}\end{equation}

Because all of the solutions are \pi radians apart, the general solution is x=\frac{\pi}{3} \pm \pi

In general

    \begin{equation*}tanx=y\end{equation}

    \begin{equation*}x=arctan(y) + n\pi, n\in \mathbb{Z}\end{equation}

Examples

Solve for all values of x, tan^2(x)+tan(x)-6=0

    \begin{equation*}tan^2(x)+tan(x)-6=0\end{equation}

This is a quadratic equation – we need two numbers that add to 1 and multiple to -6, +3 \text { and } -2

    \begin{equation*}(tan(x)+3)(tan(x)-2))=0\end{equation}

    \begin{equation*}tan(x)=-3 \text { or } tan(x)=2\end{equation}

    \begin{equation*}x=arctan(-3)+n\pi \text { or } x=arctan(2)+n\pi, n\in\mathbb{Z}\end{equation}


Solve 2cos(2x+\frac{\pi}{18})=\sqrt{3}

    \begin{equation*}2cos(2x+\frac{\pi}{18})=\sqrt{3}\end{equation}

    \begin{equation*}cos(2x+\frac{\pi}{18})=\frac{\sqrt{3}}{2}\end{equation}

    \begin{equation*}2x+\frac{\pi}{18}=2n\pi \pm \frac{\pi}{6}\end{equation}

    \begin{equation*}2x=2n\pi \pm \frac{\pi}{6}-\frac{\pi}{18}\end{equation}

    \begin{equation*}2x=2n\pi \pm \frac{\pi}{9}\end{equation}

    \begin{equation*}x=n\pi \pm \frac{\pi}{18}\end{equation}

Leave a Comment

Filed under Algebra, Quadratic, Solving Equations, Solving Trig Equations, Trigonometry, Year 11 Specialist Mathematics

Trigonometry Question

I don’t know where I found this question, but it does require algebra and problem solving (as well as right trig and Pythagoras)

From a point A, a lighthouse is on a bearing of 026^\circT and the top of the light house is at an angle of elevation of 20.25^\circ. From a point B, the lighthouse is on a bearing of 296^\cricT and the top of the lighthouse is at angle of elevation of 10.2^\circ. If A and B are 500 metres apart, find the height of the lighthouse.

Let’s draw a diagram.

Let the height of the lighthouse be h

We can find the angle between A, the lighthouse, and B by using the base triangle

The red line from L is parallel to the two north lines. Hence \theta=26^\circ+64^\circ=90^\circ (Alternate angles in parallel lines are congruent)

It’s a right triangle so we know

(1)   \begin{equation*}500^2=(AL)^2+(BL)^2\end{equation*}

We are going to use the other two triangles to find AL and BL


tan(20.25)=\frac{h}{AL}
AL=\frac{h}{tan(20.25)}

tan(10.2)=\frac{h}{BL}
BL=\frac{h}{tan(10.2)}

Substitute AL and BL into equation 1

    \begin{equation*}500^2=(\frac{h}{tan(20.25)})^2+(\frac{h}{tan(10.2)})^2\end{equation}

Solve for h.

    \begin{equation*}500^2=7.35h^2+30.89h^2=38.24h^2\end{equation}

    \begin{equation*}h^2=6538.3\end{equation}

    \begin{equation*}h=80.9m\end{equation}

Leave a Comment

Filed under Algebra, Bearings, Pythagoras, Right Trigonometry, Solving Equations, Trigonometry

Area/Geometry Problem

This problem is from The Geometry Forum Problem of the Week June 1996

In triangle ABC, AC=18 and D is the point on AC for which AD=5. Perpendiculars drawn from D to AB and CB have lengths of 4 and 5 respectively. What is the area of triangle ABC?

I put together a diagram (in Geogebra)

Add points P and Q

Triangle APD and triangle DQC are right angled. Using pythagoras, AP=3 and QC=12

BQDP is a cyclic quadrilateral and BD is the diameter. I am not sure if this is useful, but it is good to notice.

    \begin{equation*}sin(A+B+C)=sin(180)=0\end{equation}

    \begin{equation*}sin((A+C)+B)=sin(A+C)cosB+sinBcos(A+C)=0\end{equation}

    \begin{equation*}cosB(sinAcosC+sinCcosA)+sinB(cosAcosC-sinAsinC)=0\end{equation}

    \begin{equation*}cosB(\frac{4}{5}\times\frac{12}{13}+\frac{5}{13}\times\frac{3}{5})+sinB(\frac{3}{5}\times\frac{12}{13}-\frac{4}{5}\times\frac{5}{13})=0\end{equation}

    \begin{equation*}cosB(\frac{48}{65}+\frac{15}{65})+sinB(\frac{36}{65}-\frac{20}{65})=0\end{equation}

    \begin{equation*}\frac{63}{65}cosB+\frac{16}{65}sinB=0\end{equation}

    \begin{equation*}63cosB+16sinB=0\end{equation}

    \begin{equation*}63+16tanB=0\end{equation}

    \begin{equation*}tanB=\frac{-63}{16}\end{equation}

If tanB=\frac{-63}{16} then sinB=\frac{63}{65}

Now,

    \begin{equation*}\frac{y+12}{sinA}=\frac{18}{sinB}\end{equation}

    \begin{equation*}y+12=\frac{4}{5}(18)\frac{65}{63}\end{equation}

    \begin{equation*}y+12=\frac{104}{7}\end{equation}

Hence the Area is

    \begin{equation*}A=\frac{1}{2}(18)(\frac{104}{7})sinC\end{equation}

    \begin{equation*}A=\frac{1}{2}(18)(\frac{104}{7})\frac{5}{13}\end{equation}

    \begin{equation*}A=\frac{360}{7}=51.43\end{equation}

Leave a Comment

Filed under Area, Finding an area, Geometry, Identities, Non-Right Trigonometry, Pythagoras, Trigonometry

Vector and Scalar Projection

The vector projection (vector resolution or vector component) of \mathbf{a} onto a non-zero vector \mathbf{b} is splitting \mathbf{a} into two vectors, one is parallel to \mathbf{b} (the vector projection) and one perpendicular to \mathbf{b}

In the above diagram \mathbf{a_1} is the vector projection of \mathbf{a} onto \mathbf{b} and \mathbf{a_2} is perpendicular to \mathbf{b}.

How do we find \mathbf{a_1} and \mathbf{a_2}?

Using right trigonometry,

cos(\theta)=\frac{|\mathbf{a_1}|}{|\mathbf{a}|}

Remember the scalar product (dot product) of vectors is

(1)   \begin{equation*}\mathbf{a}\cdot\mathbf{b}=|\mathbf{a}||\mathbf{b}|cos(\theta)\end{equation*}

Hence cos(\theta)=\frac{\mathbf{a}\cdot\mathbf{b}}{|\mathbf{a}||\mathbf{b}|}

\frac{\mathbf{a}\cdot\mathbf{b}}{|\mathbf{a}||\mathbf{b}|}=\frac{|\mathbf{a_1}|}{|\mathbf{a}|}

and, |\mathbf{a_1}|=\frac{\mathbf{a}\cdot\mathbf{b}}{|\mathbf{a}||\mathbf{b}|}\times|\mathbf{a}|

|\mathbf{a_1}|=\frac{\mathbf{a}\cdot\mathbf{b}}{|\mathbf{b}|}

This is the scalar projection of \mathbf{a} onto \mathbf{b}

To find the vector projection we need to multiply by \mathbf{\hat{b}}, that is find a vector with the same magnitude as \mathbf{a_1} in the direction of \mathbf{b}.

The vector projection is

\mathbf{a_1}=\frac{\mathbf{a}\cdot\mathbf{b}}{|\mathbf{b}|}\times \mathbf{\hat{b}}

\mathbf{a_1}=\frac{\mathbf{a}\cdot\mathbf{b}}{|\mathbf{b}|}\times \frac{\mathbf{b}}{|\mathbf{b}|}

\mathbf{a_1}=\frac{\mathbf{a}\cdot\mathbf{b}}{(|\mathbf{b}|)^2}\times \mathbf{b}

Now for \mathbf{a_2}, we know \mathbf{a}=\mathbf{a_1}+\mathbf{a_2}

Hence, \mathbf{a_2}=\mathbf{a}-\mathbf{a_1}

Example

From Cambridge Year 11 Specialist Mathematics (Chapter 3)

(a) \frac{\mathbf{a}\cdot\mathbf{b}}{|\mathbf{b}|^2}\mathbf{b}

=\frac{\begin{pmatrix}4\\1\end{pmatrix}\cdot\begin{pmatrix}1\\-1\end{pmatrix}}{2}\times(\mathbf{i}-\mathbf{j})

=\frac{3}{2}{(\mathbf{i}-\mathbf{j})

(b)4\mathbf{i}+\mathbf{j}-\frac{3}{2}{(\mathbf{i}-\mathbf{j})=\frac{5}{2}\mathbf{i}+\frac{5}{2}\mathbf{j}

(c)

The shortest distance (green vector) is the vector component of \mathbf{a} perpendicular to \mathbf{b}, i.e. \frac{5}{2}\mathbf{i}+\frac{5}{2}\mathbf{j}

|\frac{5}{2}\mathbf{i}+\frac{5}{2}\mathbf{j}|=\sqrt{\frac{25}{4}+\frac{25}{4}}=\sqrt{\frac{50}{4}}=\frac{5\sqrt{2}}{2}

Leave a Comment

Filed under Right Trigonometry, Trigonometry, Vector Projection, Vectors, Year 11 Specialist Mathematics

Area of Regular Polygons

Finding the area of a regular polygon when you know the side length

Find the area of an n-sided regular polygon if you know the side length, l.

An octagon for a visual reference

Find the h of the triangle in terms of l and theta.

tan(\theta)=\frac{\frac{l}{2}}{h}

h=\frac{l}{2tan(\theta)}

Remember the area of a triangle is A=\frac{1}{2}bh

Hence, A=\frac{1}{2} l \times \frac{l}{2tan(\theta)}=\frac{l^2}{4tan(\theta)}

And \theta=\frac{360}{2n}=\frac{180}{n}

Therefore A=\frac{l^2}{4tan(\frac{180}{n})}

There are n triangles in an n-sided polygon

(1)   \begin{equation*}A=\frac{nl^2}{4tan(\frac{180}{n})}\end{equation*}

Find the area of a hexagon with side length 10cm.
A=\frac{6\times10^2}{4tan(\frac{180}{6})}
A=\frac{600}{4(\frac{1}{\sqrt{3}})}
A=150\sqrt{3} cm^2

Finding the area of a polygon if you know the inradius or the apothem

The apothem and the inradius are the same. It is the radius of the incircle.

Find the area of the triangle in terms of a and theta.

tan(\theta)=\frac{\frac{l}{2}}{a}

l=2atan(\theta)

A=\frac{1}{2}bh

A=\frac{1}{2}2atan(\theta)a=a^2tan(\theta)

And \theta=\frac{180}{n}

Hence for an n-sided polygon

(2)   \begin{equation*}A=na^2tan(\frac{180}{n})\end{equation*}

Find the area of a regular pentagon with apothem 4.5cm
A=5\times 4.5^2tan(\frac{180}{5})
A=73.56cm^2

Finding the area of a regular polygon given the circumradius

The circumradius is the radius of the circumscribed circle (R in the diagram above)

Remember the area of triangle formula

A=\frac{1}{2}absin(\theta)

A=\frac{1}{2}R^2sin(\theta)

\theta=\frac{360}{n}

Hence, A=\frac{1}{2}R^2sin(\frac{360}{n})

Hence, for an n-sided polygon

(3)   \begin{equation*}A=\frac{nR^2sin(\frac{360}{n})}{2}\end{equation*}

Find the area of a regular octagon inscribed in a circle of radius 10cm.
A=\frac{8\times 10^2sin(45)}{2}
A=200\sqrt{2}cm^2

Leave a Comment

Filed under Area, Area of Triangles (Sine), Finding an area, Non-Right Trigonometry, Regular Polygons, Right Trigonometry, Year 11 Mathematical Methods