Category Archives: Factorising

Simultaneous Equation (or is it?)

Solve simultaneously

X+Y+Z=10
XYZ=30
XY+YZ+XZ=31

We could attempt to solve this simultaneously, but I think the algebra would be tricky.

The three equations are related to the roots of a cubic polynomial.

If the general equation of the polynomial is ax^3+bx^2+cx+d, then we know

The sum of the roots

\alpha+\beta+\gamma=\frac{-b}{a}

The product of the roots

\alpha\beta\gamma=\frac{-d}{a}

and

\alpha\beta+\alpha\gamma+\beta\gamma=\frac{c}{a}

So from our three equations we have

(1)   \begin{equation*}X+Y+Z=10=\frac{-b}{a}\end{equation*}

(2)   \begin{equation*}XYZ=30=\frac{-d}{a}\end{equation*}

(3)   \begin{equation*}XY+YZ+XZ=31=\frac{c}{a}\end{equation*}

Let a=1, then b=-10, c=31, and d=-30

Our cubic is t^3-10t^2+31t-30 and we can try to solve it.

The roots will be factors of -30, so \pm 1, \pm 2, \pm 3, \pm 5, \pm 6, \pm 10, \pm 15, \pm 30

Try t=2

    \begin{equation*}(2)^3-10(2)^2+31(2)-30=0\end{equation}

Hence t=2 is a root.

Use synthetic division to find the quadratic factor

21-1031-30
2-1630
1-8150

The quadratic factor is x^2-8x+15, which factorises to (x-3)(x-5)

Hence the solutions are X=2, Y=3, and Z=5

We could assume the solutions are natural numbers, then we can look at factors of 30.

Factors of ThirtyX+Y+ZXY+YZ+XZ
1, 1, 301+1+30=321+30+30=61
1, 2, 151+2+15=182+15+30=47
1, 5, 61+5+6=125+6+30=41
2, 3, 52+3+5=106+10+15=31

Hence the solutions are X=2, Y=3, and Z=5

But with this approach we might not be able to find the solutions.

Leave a Comment

Filed under Algebra, Cubics, Factorising, Polynomials, Quadratic, Simultaneous Equations, Solving, Sum and Product of Roots

Synthetic Division (for factorising and/or solving polynomials)

I use synthetic division to factorise polynomials with a degree greater than 2. For example, f(x)=x^3+2x^2-5x-6

It works best with monic polynomials but can be adapted to non-monic ones (see example below).

The only problem is that you need to find a root to start.

Try the factors of -6 i.e. (-1, 1, 2, -2, 3, -3, 6, -6)

f(-1)=(-1)^3+2(-1)^2-5(-1)-6=0

Hence, x=-1 is a root and (x+1) is a factor of the polynomial.

Set up as follows

Bring the first number down

Multiply by the root and place under the second co-efficient

Add down

Repeat the process

The numbers at the bottom (1, 1, -6) are the coefficients of the polynomial factor.

We now know x^3+2x^2-5x-6=(x+1)(x^2+x-6).

We can factorise the quadratic in the usual way.

x^2+x-6=(x+3)(x-2)

Hence x^3+2x^2-5x-6=(x+1)(x+3)(x-2).

Let’s try a non-monic example

Factorise 6x^4+39x^3+91x^2+89x+30

I know -2 is a root. Otherwise I would try the factors of 30.

Use synthetic division

Because this was non-monic we need to divide our new co-efficients (6, 27, 37, 15) by 6 (the co-efficient of the x^4 term)

x^3+\frac{9}{2}x^2+\frac{37}{6}+\frac{5}{2}

We now need to go again. I know that \frac{-3}{2} is a root and (2x+3) is a factor.

Our quadratic factor is x^2+3x+5/3, which is 3x^2+9x+5.

The quadratic factor doesn’t have integer factors so,

6x^4+39x^3+91x^2+89x+30=(x+2)(2x+3)(3x^2+9x+5)

I think this is much quicker than polynomial long division.

Leave a Comment

Filed under Algebra, Factorising, Factorising, Fractions, Polynomials, Quadratic, Simplifying fractions, Solving Equations

Factorising Non-Monic Quadratics

The general equation of a quadratic is ax^2+bx+c

Let’s explore different methods of factorising a non-monic quadratic (the a term is not 1)

Factorise 6x^2+x-12

We need to find two numbers that add to 1 and multiply to -72 (i.e. add to b and multiply to a\times c)

The two numbers are 9 and -8

Method 1 – Splitting the middle term

This is the method I teach the most often

    \begin{equation*}6x^2+x-12\end{equation}

Split the middle term (the b term) into the two numbers

    \begin{equation*}6x^2-8x+9x-12\end{equation}

The order doesn’t matter.

Find a common factor for the first term terms, and then for the last two terms.

    \begin{equation*}2x(3x-4)+3(3x-4)\end{equation}

There is a common factor of (3x-4), factor it out.

    \begin{equation*}(3x-4)(2x+3)\end{equation}

Method two – Fraction

    \begin{equation*}6x^2+x-12\end{equation}

Put 6x into both factors and divide by 6

    \begin{equation*}\frac{(6x-8)(6x+9)}{6}\end{equation}

Factorise

    \begin{equation*}\frac{2(3x-4)3(2x+3)}{6}\end{equation}

    \begin{equation*}\frac{6(3x-4)(2x+3)}{6}\end{equation}

    \begin{equation*}(3x-4)(2x+3)\end{equation}

Method 3 – Monic to non-monic

    \begin{equation*}y=6x^2+x-12\end{equation}

Multiply both sides of the equation by a

    \begin{equation*}6y=6(6x^2+x-12)\end{equation}

    \begin{equation*}6y=6^2x^2+6x-72\end{equation}

    \begin{equation*}6y=(6x)^2+6x-72\end{equation}

Let A=6x

    \begin{equation*}6y=A^2+A-72\end{equation}

Factorise

    \begin{equation*}6y=(A+9)(A-8)\end{equation}

Replace the A with 6x

    \begin{equation*}6y=(6x+9)(6x-8)\end{equation}

    \begin{equation*}6y=3(2x+3)2(3x-4)\end{equation}

    \begin{equation*}6y=6(2x+3)(3x-4)\end{equation}

    \begin{equation*}y=(2x+3)(3x-4)\end{equation}

Method 4 – Cross Method

    \begin{equation*}6x^2+x-12\end{equation}

Place the two numbers in the cross

Place the two numbers that add to 1 and multiply to -72 in the other parts of the cross.

Divide these two numbers by 6 (i.e a)

Simplify

Hence,

    \begin{equation*}(x-\frac{4}{3})(x+\frac{3}{2})\end{equation}

Which is

    \begin{equation*}(3x-4)(2x+3)\end{equation}

Method 5 – By Inspection

This is my least favourite method – although students get better with practice

    \begin{equation*}6x^2+x-12\end{equation}

The factors of a are 1, 2, 3, and 6 and the factors of 12 are 1, 2, 3, 4, 6, 12

We know one number is positive and one number negative.

Which give us all of these possibilities

Possible factorisationsb term of expansion
(x-1)(6x+12)12x-6x=6xNo
(x-2)(6x+6)6x-12x=-6xNo
(x-3)(6x+4)4x-18x-14xNo
(2x-1)(3x+12)24x-3x=21xNo
(2x-2)(3x+6)12x-6x=6xNo
(2x-3)(3x+4)8x-9x=-1xAlmost, switch the signs
(2x+3)((3x-4)-8x+9x=1xYes

    \begin{equation*}(2x+3)(3x-4)\end{equation}

With a bit of practice you don’t need to check all of the possibilties, but I find students struggle with this method.

Method 6 – Grid

    \begin{equation*}6x^2+x-12\end{equation}

Create a grid like the one below

6x^2
-12

Find the two numbers that multiply to -72 and add to 1 and place them in the other grid spots (see below)

6x^2-8x
9x-12

Find the HCF (highest common factor) of each row and put in the first column.

Row 1 HCF=2x, Row 2 HCF=3

2x6x^2-8x
39x-12

For the columns, calculate what is required to multiple the HCF to get the table entry.

For example, what do you need to multiple 2x and 3 by to get 6x^2 and 9x? In this case it is 3x. It’s always going to be the same thing, so just use one value to calculate it,

3x-4
2x6x^2-8x
39x-12

The factors are column 1 and row 1
(2x+3)(3x-4)

The two methods I use the most are splitting the middle term, and the cross method, but I can see value in the grid method.

Leave a Comment

Filed under Algebra, Factorising, Factorising, Polynomials, Quadratic, Quadratics

Infinite Product Expansion of cos (x)

Remember

(1)   \begin{equation*}cos(x)=1-\frac{1}{2!}x^2+\frac{1}{4!}x^4-\frac{1}{6!}x^6+...\end{equation*}

We know that cos(x)=0 for odd integer multiples of \frac{\pi}{2}, i.e. \frac{\pi}{2}, \frac{3\pi}{2}, ..., which is \frac{(2n-1)\pi}{2} for n\neq 0

Hence,

    \begin{equation*}0=1-\frac{1}{2!}x^2+\frac{1}{4!}x^4-\frac{1}{6!}x^6+...\end{equation}

for x=\frac{(2n-1)\pi}{2}, n>0

We can factorise our cos(x) expansion

    \begin{equation*}(1-\frac{x^2}{r_1})(1-\frac{x^2}{r_2})...\end{equation}

We know r_1=\frac{\pi}{2}, r_2=\frac{3\pi}{2}, ...

    \begin{equation*}cos(x)=(1-\frac{x^2}{(\frac{\pi}{2})^2})(1-\frac{x^2}{(\frac{3\pi}{2})^2})...(1-\frac{x^2}{(\frac{(2n-1)\pi}{2})^2})\end{equation}

    \begin{equation*}cos(x)=\Pi_{n=1}^{\infty}(1-\frac{x^2}{(\frac{(2n-1)\pi}{2})^2})\end{equation}

    \begin{equation*}cos(x)=\Pi_{n=1}^{\infty}(1-\frac{4x^2}{(2n-1)^2\pi^2})\end{equation}

1 Comment

Filed under Factorising, Identities, Infinite Product Expansion, Interesting Mathematics, Polynomials, Trigonometry

Solving Cubic Functions

I have been thinking about cubics a bit lately because some of my students are solving and then sketching cubics. Plus I am reading An Imaginary Tale by Paul Nahin, which talks about solving cubics and complex numbers.

Cubics must have at least one real root. If one of the roots is a rational number, then we can use the Factor and Remainder Theorem.

For example,

Solve 2x^3-3x^2-3x+2=0

We know the root(s) must be a factor of 2\times3=6.
I always start with 1 or -1
2(1)^3-3(1)^2-3(1)+2=2-3-3+2=-2 \therefore x\neq=1
Try -1
2(-1)^3-3(-1)^2-3(-1)+2=-2-3+3+2=0 \therefore x=-1 and (x+1) is a factor.
Then we can do polynomial long division.

Now we know that 2x^3-3x^2-3x+2=(x+1)(2x^2-5x+2)
And we can factorise the quadratic (or using the quadratic equation formula)
2x^2-5x+2=2x^2-4x-x+2
=2x(x-2)-1(x-2)
=(2x-1)(x-2)
\therefore x=-1, \frac{1}{2}, 2

But what if it is not factorisable?

For example,

Solve 2x^3+5x^2-2x+4=0

How many roots does this equation have?

We could find the derivative and find out how many stationary points the function has.

f'(x)=6x^2+10x-2

This is a quadratic function. Find the discriminant to determine the number of roots.

\Delta=b^2-4ac=100-4(6)(-2)=148

As \Delta>0, there are two stationary points, which means we could have 1, 2 (one root is repeated) or three roots, depending on if the function crosses the x-axis between stationary points. So not much use.

We could try the discriminant of a cubic.

\Delta=18abcd-4b^3d+b^2c^2-4ac^2-27a^2d^2

\Delta=18(2)(5)(-2)(4)-4(5^3)(4)+(5^2)(-2)^2-4(2)(-2)^2-27(2)^2(4)^2=-5100

The discriminant is negative so there is one real root.

From my reading, we need to turn the cubic into a depressed cubic (cubics of the form x^3+px+q=0).

We can do this by using a change of variable.

Let x=t-\frac{5}{6}
2(x^3+\frac{5}{2}x^2-x+2)=0
\therefore x^3+\frac{5}{2}x^2-x+2=0
Substitute t-\frac{5}{6} into the cubic.
(t-\frac{5}{6})^3+\frac{5}{2}(t-\frac{5}{6})^2-(t-\frac{5}{6})+2
(t^3-3(\frac{5}{6})t^2+3(\frac{5}{6})^2t-(\frac{5}{6})^3+\frac{5}{2}(t^2-2(\frac{5}{6})t+(\frac{5}{6})^2)-t+\frac{5}{6}+2
t^3-\frac{5}{2}t^2+\frac{25}{12}t-\frac{125}{216}+\frac{5}{2}t^2-\frac{25}{6}t+\frac{125}{72}-t+\frac{5}{6}+2
t^3-\frac{37}{12}t+\frac{431}{108}

We can then use Cardano’s formula

x=\sqrt[3]{-\frac{q}{2}+\sqrt{(-\frac{q}{2})^2+(\frac{p}{3})^3}}+\sqrt[3]{-\frac{q}{2}-\sqrt{(-\frac{q}{2})^2+(\frac{p}{3})^3}}

p=-\frac{37}{12} and q=\frac{431}{108}
\frac{p}{3}=\frac{-37}{36}
\frac{q}{2}=\frac{431}{216}
(\frac{431}{216})^2+(\frac{-37}{36})^3=\frac{139}{48}
t=\sqrt[3]{\frac{-431}{216}+\sqrt{\frac{139}{48}}}+\sqrt[3]{\frac{-431}{216}-\sqrt{\frac{139}{48}}}
t=-2.21095...
\therefore x=-2.21095...-\frac{5}{6}=-3.044

We can see from the sketch below that there is only one solution and it is about -3.

1 Comment

Filed under Cubics, Factorising, Polynomials, Solving