Category Archives: Measurement

Area Problem

Two rectangular garden beds have a combined area of 40m^2. The larger bed has twice the perimeter of the smaller and the larger side of the smaller bed is equal to the smaller side of the larger bed. If the two beds are not similar, and if all edges are a whole number of metres, what is the length, in metres, of the longer side of the larger bed?
AMC 2007 S.14

Let’s draw a diagram

From the information in the question, we know

(1)   \begin{equation*}xy+xz=40\end{equation*}

and

    \begin{equation*}2x+2y=4x+4z\end{equation}

    \begin{equation*}x+y=2x+2z\end{equation}

    \begin{equation*}x+y=2x+2z\end{equation}

(2)   \begin{equation*}y=x+2z\end{equation*}

Equation 1 becomes

    \begin{equation*}x(x+3z)=40\end{equation}

As the sides are whole numbers, consider the factors of 40.

1, 2, 4, 5, 8, 10, 20, 40

Remember z<x<y

xx+3zzyPerimeter LargePerimeter SmallComment
2206x must be greater than z
410282(4+8)=242(2+4)=12This one works
58172(5+7)=242(5+1)=12This one also works
810\frac{2}{3}z not a whole number
104z<0Not possible
202z<0
Not possible
401z<0Not possible

There are two possibilities

The large garden bed could be 4 by 8 and the smaller 4 by 2 (Area 40 Perimeters 24 and 12)

or

The large garden bed could be 5 by 7 and the smaller 5 by 1 (Area 40 Perimeters 24 and 12)

Leave a Comment

Filed under Area, Interesting Mathematics, Measurement, Puzzles, Solving Equations, Year 8 Mathematics

Volume and Surface Area of a Conical Frustrum

My best attempt at drawing a Frustrum in Geogebra.

We have a truncated cone,

(1)   \begin{equation*}V=\frac{1}{3}\pi R_2^2(h_1+h_2)-\frac{1}{3}\pi R_1^2h_1\end{equation*}

We are unlikely to know h_1. Can we get h_1 in terms that we do know (i.e. R_1, R_2, h_2)?

Think of similar triangles

Cross section of the cone

\Delta ABC \sim \Delta ADE (AA)

R_1 \parallel R_2

\angle {C}=\angle{E} (Corresponding Angles in Parallel Lines)

\angle {B}=\angle {D} (Corresponding Angles in Parallel Lines)

Therefore

    \begin{equation*}\frac{h_1}{R_1}=\frac{h_1+h_2}{R_2}\end{equation}

Rearrange to make h_1 the subject.

    \begin{equation*}h_1=\frac{h_2R_1}{R_2-R_1}\end{equation}

Substitute into equation (1)

    \begin{equation*}V=\frac{1}{3} \pi((R_2^2(\frac{h_2R_1}{R_2-R_1})+h_2)-R_1^2(\frac{h_2R_1}{R_2-R_1}))\end{equation}

    \begin{equation*}V=\frac{1}{3} \pi (R_2^2h_2+\frac{R_2^2h_2R_1}{R_2-R_1}-\frac{R_1^2h_2R_1}{R_2-R_1})\end{equation}

    \begin{equation*}V=\frac{1}{3} \pi (R_2^2h_2+\frac{R_2^2h_2R_1-R_1^2h_2R_1}{R_2-R_1})\end{equation}

    \begin{equation*}V=\frac{1}{3} \pi (R_2^2h_2+\frac{h_2R_1}{R_2-R_1}(R_2^2-R_1^2))\end{equation}

    \begin{equation*}V=\frac{1}{3} \pi h_2(R_2^2+\frac{R_1}{R_2-R_1}(R_2-R_1)(R_2+R_1))\end{equation}

    \begin{equation*}V=\frac{1}{3} \pi h_2(R_2^2+R_1(R_2+R_1))\end{equation}

    \begin{equation*}V=\frac{1}{3} \pi h_2(R_2^2+R_1 R_2+R_1^2)\end{equation}

Now let’s think about the surface area.

The surface area of a cone is A=\pi r^2+\pi rs where s is the slant height of the cone.

Once again, we need to subtract the ‘missing’ part of the cone.

(2)   \begin{equation*}A=\pi R_2^2+\pi R_2(s_1+s_2)+ \pi R_1^2- \pi R_1s_1\end{equation*}

We don’t need to subtract the circle of the top cone because it is the top of the frustrum, but we do need to add it on.

Using similar triangles again

    \begin{equation*}\frac{s_1}{R_1}=\frac{s_1+s_2}{R_2}\end{equation}

    \begin{equation*}s_1=\frac{s_2R_1}{R_2-R_1}\end{equation}

Substitute into equation (2)

    \begin{equation*}A=\pi(R_2^2+R_2(\frac{s_2R_1}{R_2-R_1}+s_2)+\pi R_1^2-R_1(\frac{s_2R_1}{R_2-R_1}))\end{equation}

    \begin{equation*}A=\pi(R_2^2+R_2s_2+R_1^2+\frac{s_2R_1}{R_2-R_1}(R_2-R_1))\end{equation}

    \begin{equation*}A=\pi(R_2^2+R_2s_2+R_1s_2+R_1^2)\end{equation}

    \begin{equation*}A =\pi (R_1^2+s_2(R_1+R_2)+R_2^2)\end{equation}

And hence the curved surface area is \pi s_2(R_1+R_2).

Leave a Comment

Filed under Area, Area of Frustrum, Interesting Mathematics, Measurement, Volume of Frustrum