Category Archives: Integration

Integration Question (much easier with Integration by Parts)

The Year 12 Mathematics Methods course doesn’t cover Integration by Parts, so they end up with questions like the following.

Determine the following:
(a) \frac{d}{dx} \left (e^{2x}sin(3x) \right )
(b) \frac{d}{dx} \left (e^{2x}cos(3x) \right )
Hence, determine the following integral by considering both parts (a) and (b)
\int_0^{\frac{\pi}{2}}13e^2xcos(3x) \enspace  dx

(a) Use the product rule

(1)   \begin{equation*}\frac{d}{dx} \left (e^{2x}sin(3x) \right)= 2e^{2x}sin(3x)+3e^{2x}cos(3x) \end{equation*}

(b)

(2)   \begin{equation*}\frac{d}{dx} \left (e^{2x}cos(3x) \right )=2e^{2x}cos(3x)-3e^{2x}sin(3x)\end{equation*}

I need to use equations 1 and 2 to find \int_0^{\frac{\pi}{2}}13e^2xcos(3x) \enspace  dx.

The e^{2x}sin(3x) terms need to vanish and I need 13 of the e^{2x}cos(3x) terms.

3\times \text{equation} (1)+ 2\times \text{equation} (2)

(3)   \begin{equation*}3\frac{d}{dx} \left (e^{2x}sin(3x) \right)= 6e^{2x}sin(3x)+9e^{2x}cos(3x) \end{equation*}

(4)   \begin{equation*}2\frac{d}{dx} \left (e^{2x}cos(3x) \right )=4e^{2x}cos(3x)-6e^{2x}sin(3x)\end{equation*}

Equation 3 plus equation 4

(5)   \begin{equation*}3\frac{d}{dx} \left (e^{2x}sin(3x) \right)+2\frac{d}{dx} \left (e^{2x}cos(3x) \right )=13e^{2x}cos(3x)\end{equation*}

Integrate both sides of the equation

\int_0^{\frac{\pi}{2}} \left (3\frac{d}{dx} \left (e^{2x}sin(3x) \right)+2\frac{d}{dx} \left (e^{2x}cos(3x) \right )  \right ) dx=\int_0^{\frac{\pi}{2}}13e^{2x}cos(3x) \enspace dx

By the fundamental theorem of calculus, we know

(3e^{2x}sin(3x) \right)+2 \left (e^{2x}cos(3x) \right ]_0^{\frac{\pi}{2}}=\int_0^{\frac{\pi}{2}}13e^{2x}cos(3x) \enspace dx

3e^{\pi}sin(\frac{3\pi}{2}})+2e^{\pi}cos(\frac{3\pi}{2}})-3e^0sin(3(0))-2e^0cos(3(0))=\int_0^{\frac{\pi}{2}}13e^{2x}cos(3x) \enspace dx

\int_0^{\frac{\pi}{2}}13e^{2x}cos(3x) \enspace dx=-3e^{\pi}-2

Integration by Parts

Remember \int u\enspace dv=uv-\int v \enspace du

\int_0^{\frac{\pi}{2}}e^{2x}cos(3x) \enspace dx

Let u=cos(3x), then du=-3sin(3x)

and dv=e^{2x}, then v=\frac{e^{2x}}{2}

\int_0^{\frac{\pi}{2}}e^{2x}cos(3x) \enspace dx = \left (cos(3x)\left (\frac{e^{2x}}{2}\right ) \right )_0^{\frac{\pi}{2}}-\int_0^{\frac{\pi}{2}} \frac{e^{2x}}{2}(-3sin(3x)) \enspace dx

\int_0^{\frac{\pi}{2}}e^{2x}cos(3x) \enspace dx=cos(\frac{3\pi}{2})(\frac{e^\pi}{2})-cos(0)(\frac{e^0}{2})+\frac{3}{2}\int_0^{\frac{\pi}{2}}sin(3x)e^{2x} \enspace dx

\int_0^{\frac{\pi}{2}}e^{2x}cos(3x) \enspace dx=-\frac{1}{2}+\frac{3}{2}\int_0^{\frac{\pi}{2}}sin(3x)e^{2x} \enspace dx

Let u=sin(3x), then du=3cos(3x)

and dv=e^{2x}. then v=\frac{e^{2x}}{2}

\int_0^{\frac{\pi}{2}}e^{2x}cos(3x) \enspace dx=-\frac{1}{2}+\frac{3}{2}(\frac{e^{2x}}{2}sin(3x)]_0^{\frac{\pi}{2}}-\int_0^{\frac{\pi}{2}} \frac{e^{2x}}{2}(3cos(3x)) \enspace dx)

\int_0^{\frac{\pi}{2}}e^{2x}cos(3x) \enspace dx=-\frac{1}{2}+\frac{3}{2}(-\frac{e^\pi}{2}-\frac{3}{2} \int_0^{\frac{\pi}{2}} e^{2x}cos(3x) \enspace dx)

\int_0^{\frac{\pi}{2}}e^{2x}cos(3x) \enspace dx=-\frac{1}{2}-\frac{3e^\pi}{4}-\frac{9}{4} \int_0^{\frac{\pi}{2}} e^{2x}cos(3x) \enspace dx

Collect like terms (the integrals are like)

\frac{13}{4}(\int_0^{\frac{\pi}{2}}e^{2x}cos(3x) \enspace dx)=-\frac{1}{2}-\frac{3e^\pi}{4}

(\int_0^{\frac{\pi}{2}}e^{2x}cos(3x) \enspace dx)=\frac{-2-3e^\pi}{13}

Leave a Comment

Filed under Algebra, Calculus, Integration, Integration by Parts, Year 12 Mathematical Methods

Fundamental Theorem of Calculus

(1)   \begin{equation*}\frac{d}{dx} \left (\int_2^{f(x)} g(t) dt \right )=g(f(x))f'(x)\end{equation*}

My Year 12 Mathematics Methods students are getting ready for their exam, and questions using the above idea have created a bit of consternation. I am going to work through an example, and show why the ‘formula’ works.

Example

Find \frac{d}{dx} \left ( \int_2^{x^2} 4t^2+3t \enspace dt \right ).

    \begin{equation*}=\frac{d}{dx} \left (\frac{4t^3}{3}+\frac{3t^2}{2} \right ]_2^{x^2}\end{equation}

    \begin{equation*}=\frac{d}{dx} \left ( \frac{4(x^2)^3}{3}+\frac{3(x^2)^2}{2} -(\frac{4(2^3)}{3}+\frac{3(2^2)}{2} \right )\end{equation}

    \begin{equation*}=\frac{d}{dx} \left (\frac{4x^6}{3}+\frac{3x^4}{2}-\frac{50}{3} \right) \end{equation}

    \begin{equation*}=\frac{24x^5}{3}+\frac{12x^3}{2}\end{equation}

(2)   \begin{equation*}=8x^5+6x^3\end{equation*}

If we used ‘formula’ 1

    \begin{equation*}\frac{d}{dx} \left ( \int_2^{x^2} 4t^2+3t \enspace dt \right )=(4(x^2)^2+3(x^2))(2x)\end{equation}

\

(3)   \begin{equation*}\frac{d}{dx} \left ( \int_2^{x^2} 4t^2+3t \enspace dt \right )=8x^5+6x^3 \end{equation*}

We can see equation 2 and 3 are the same.

More formally

    \begin{equation*}\frac{d}{dx} \left ( \int_c^{f(x)} g(t) dt \right )=\frac{d}{dx} \left (G(f(x))-G(c) \right ) \end{equation}

Remember \frac{d}{dx} \left (f(g(x)) \right )=f'(g(x))\times g'(x)

    \begin{equation*}\frac{d}{dx} \left (G(f(x))-G(c) \right ) =G'(f(x))f'(x)=g(f(x))\times f'(x)\end{equation}

Leave a Comment

Filed under Calculus, Chain Rule, Differentiation, Integration, Year 12 Mathematical Methods

Integrating the Natural Log Function

One of the students asked me the other day how to integrate f(x)=ln(x) – it’s not part of their course, but I thought I would do it here.

We use integration by parts to integrate ln(x)

    \begin{equation*}\int u dv=uv-\int v du\end{equation}

    \begin{equation*}\int ln(x) dx\end{equation}

Let u=ln(x) and dv=1, then du=\frac{1}{x} and v=x

    \begin{equation*}\int ln(x) dx = xln(x)-\int x\times \frac{dx}{x}\end{equation}

    \begin{equation*}\int ln(x) dx = xln(x)-\int 1 dx\end{equation}

    \begin{equation*}\int ln(x) dx = xln(x)-x+c\end{equation}

What about \int 5ln(\sqrt{x}) dx

We can take advantage of log laws and the properties of integration.

    \begin{equation*}\int 5ln(\sqrt{x}) dx=5\int lnx^{\frac{1}{2}} dx=5\int \frac{1}{2}ln(x) dx=\frac{5}{2} \int ln(x) dx\end{equation}

    \begin{equation*}\frac{5}{2} \int ln(x) dx=\frac{5}{2}(xlnx-x)+c\end{equation}

Leave a Comment

Filed under Integration, Integration by Parts

Volume of Rotation About a Slanting Line

Given the area in the first quadrant bounded by x^2=12y, the line y=3 and the y-axis. What is the volume generated when this area is rotated about the line 2x-y+4=0?

Rotate the green region about the line y=2x+4

We can split the solid into shells.

    \begin{equation*}V=2\pi r dx dy\end{equation}

Where r is the distance from each (x,y) point in the region to the line 2x-y+4=0, dx is the width, and dy is the height.

The distance between a point and a line is

    \begin{equation*} d=\frac{Ax+By+C=0}{\sqrt{A^2+B^2}}\end{equation}

Hence, r=\frac{2x-y+4}{\sqrt{5}}

    \begin{equation*}V=2\pi\int \int \frac{2x-y+4}{\sqrt{5}} dx dy\end{equation}

Now we just need to work out the bounds.

0\le y \le 3 and 0\le x\le \sqrt{12y}

    \begin{equation*}V=\frac{2\pi}{\sqrt{5}} \int_0^3 \int_0^{\sqrt{12y}} 2x-y+4 dx dy\end{equation}

    \begin{equation*}V=\frac{2\pi}{\sqrt{5}}\int_0^3 x^2-yx+4x]_0^{\sqrt{12y}} dy \end{equation}

    \begin{equation*}V=\frac{2\pi}{\sqrt{5}}\int_0^3 12y-\sqrt{12}y^{\frac{3}{2}+4\sqrt{12y} dy\end{equation}

    \begin{equation*}V=\frac{2\pi}{\sqrt{5}}(6y^2-\frac{2\sqrt{12}}{5}y^{\frac{5}{2}}+\frac{8\sqrt{12}}{3}y^{\frac{3}{2}}]_0^3\end{equation}

    \begin{equation*}V=\frac{2\pi}{\sqrt{5}}(54-\frac{2\sqrt{12}}{5}(9\sqrt{3})+\frac{8\sqrt{12}}{3}(3\sqrt{3}))\end{equation}

    \begin{equation*}V=\frac{2\pi}{\sqrt{5}}(54-\frac{108}{5}+48)\end{equation}

    \begin{equation*}V=\frac{804\pi}{\sqrt{5}}\end{equation}

If we rationalise the denominator

    \begin{equation*}V=\frac{804\sqrt{5}\pi}{25}\end{equation}

Leave a Comment

Filed under Integration, Volume of Revolution

Volume of revolution about a line that is not an axis

Find the volume of the solid of revolution obtained by rotating the region bounded by f(x)=x^3+1, g(x)=x^2, 0\le x\le 1 about the line y=3.

Rotate the green region about the line y=3

Washer Method

    \begin{equation*}V=\pi \int [f(x)]^2 dx \end{equation}

The volume of the solid is the volume of y=x^2 rotated about y=3 subtract the volume of y=x^3+1 rotated about y=3.

    \begin{equation*}V=\pi \int_0^1((3-x^2)^2-(3-(x^3+1))^2 dx\end{equation}

3-x^2 is the distance (i.e radius) of the curve and the line.

    \begin{equation*}V=\pi \int_0^1(9-6x^2+x^4-(4-4x^3+x^6)) dx\end{equation}

    \begin{equation*}V=\pi \int_0^1(5-6x^2+4x^3+x^4-x^6) dx\end{equation}

    \begin{equation*}V=\pi (5x-2x^3+x^4+\frac{x^5}{5}-\frac{x^7}{7}]_0^1\end{equation}

    \begin{equation*}V=\pi (5-2+1+\frac{1}{5}-\frac{1}{7})\end{equation}

    \begin{equation*}V=\frac{142 \pi}{35}\end{equation}

Shell Method

The shell method is much harder because we need to split the integral into two parts.

We need to rotate the green region about y=3 and the red region

    \begin{equation*}V=2\pi\int (xf(x))dx\end{equation}

    \begin{equation*}V=2\pi[\int_0^1(3-y)\sqrt{y} dy+\int_1^2 (3-y)(y-1)^{\frac{1}{3}} dy]\end{equation}

3-y is the distance between each y-value and the line of rotation. For example, if we were rotating about the x-axis, the distance is y.

\sqrt{y} is the height of the cylinder between 0 and 1. 1-(y-1)^{\frac{1}{3}} is the height of the cylinder between 1 and 2. Refer back to Shell method for more information.

I used a calculator to find this integral

Leave a Comment

Filed under Integration, Volume of Revolution, Year 12 Specialist Mathematics

Volume of Revolution Method Two (Shell Method)

I am going to use the same example as I did for Method One (Disc or Washer Method).

If we rotate the shaded region about the x- axis, we get an open hollow cylinder (like a pipe).

The width of the integral is \delta y and the midpoint is y.

The height of the cylinder is x, but we need it in terms of y, hence x=f(y)

The volume of the hollow cylinder is the volume of the outer cylinder subtract the volume of the inner cylinder.

    \begin{equation*}V=\pi (y+\frac{\delta y}{2})^2f(y)-\pi (y-\frac{\delta y}{2})^2 f(y)\end{equation}

    \begin{equation*}V=\pi f(y)((y+\frac{\delta y}{2})^2-(y-\frac{\delta y}{2})^2)\end{equation}

Which we can expand using a difference of squares.

    \begin{equation*}V=\pi f(y)(y+\frac{\delta y}{2}+y-\frac{\delta y}{2})(y+\frac{\delta y}{2}-y+\frac{\delta y}{2})\end{equation}

    \begin{equation*}V=\pi f(y)(2y \delta y)\end{equation}

    \begin{equation*}V=2\pi yf(y)\delta y\end{equation}

The volume of the entire sold will be

    \begin{equation*}V=\Sigma_{y=a}^b 2 \pi yf(y)\delta y\end{equation}

As \delta y \rightarrow 0

    \begin{equation*}V=\lim\limits_{\delta y \to 0}\Sigma_{y=a}^b 2 \pi yf(y)\delta y=\int_a^b 2\pi yf(y) dy\end{equation}

Even though we are rotating the line about the x-axis, we are integrating with respect to the y- axis.

Example

Find the volume of the solid generated by revolving the region between y=x^2 and y=2x about the y-axis.

If we are rotating about the y-axis, we will integrate with respect to x.

    \begin{equation*}V=2\pi \int x f(x) dx\end{equation}

The height of our hollow cylinder is 2x-x^2

Hence

    \begin{equation*}V=2\pi\int_0^2 x(2x-x^2) dx\end{equation}

    \begin{equation*}V=2\pi \int_0^2 (2x^2-x^3) dx\end{equation}

    \begin{equation*}V=2\pi (\frac{2x^3}{3}-\frac{x^4}{4}]_0^2\end{equation}

    \begin{equation*}V=2\pi (\frac{2}{3}\times 8-\frac{1}{4}\times 16 )\end{equation}

    \begin{equation*}V=32 \pi(\frac{1}{3}-\frac{1}{4})\end{equation}

    \begin{equation*}V=\frac{8\pi}{3}\end{equation}

Let’s check with method one.

x^2=y and x=\frac{y}{2}

    \begin{equation*}V=\pi \int_0^4 y-\frac{y^2}{4} dy\end{equation}

    \begin{equation*}V=\pi (\frac{y^2}{2}-\frac{y^3}{12})]_0^4\end{equation}

    \begin{equation*}V=\pi(8-\frac{16}{3})\end{equation}

    \begin{equation*}V=\frac{8\pi}{3}\end{equation}

I try to pick the method that makes the integration easier.

1 Comment

Filed under Integration, Volume of Revolution, Year 12 Specialist Mathematics

Volume of Revolution – Method One (Disc or Washer Method)

If we rotate this line segment around the x-axis, we generate a three dimensional solid.

We are going to find the volume of this solid.

This is a better view of the solid

Consider a small section of the line segment and rotate this about the x-axis.

As the width of the section (\delta x) gets smaller (i.e. \rightarrow 0), the solid is a cylinder.

The radius of the cylinder is f(x) and the height of the cylinder is \delta x.

The volume of a cylinder is V=\pi r^2 h

Hence the volume of our section is

    \begin{equation*}V=\pi[f(x)]^2\delta x\end{equation}

If we divide our line segment into a large number of cylinders (of equal height) then,

    \begin{equation*}V=\Sigma_a^b(\pi [f(x)]^2\delta x\end{equation}

where a is the lower x value and b the upper.

Now we want \delta x\rightarrow 0 so V=\lim\limits_{\delta x \to 0} \Sigma_a^b(\pi [f(x)]^2\delta x

Which is

    \begin{equation*}V=\int_a^b \pi [f(x)]^2 dx\end{equation}

Example

The curve y=\sqrt{x-1}, where 2\le x\le5 is rotated about the x-axis to form a solid of revolution. Find the volume of this solid.

    \begin{equation*}V=\pi \int_2^5( y^2 dx)\end{equation}

    \begin{equation*}V=\pi \int_2^5 x-1 \space dx \end{equation}

    \begin{equation*}V=\pi (\frac{x^2}{2}-x]_2^5)\end{equation}

    \begin{equation*}V=\pi(\frac{25}{2}-5-(\frac{4}{2}-2))\end{equation}

    \begin{equation*}V=\frac{15 \pi}{2}\end{equation}

1 Comment

Filed under Integration, Volume of Revolution, Year 12 Specialist Mathematics

More Integration

I went down a rabbit hole while reading An Imaginary Tale by Paul J Nahin and I decided I wanted to do this…

    \begin{equation*}\int_0^1{x^x dx}\end{equation}

    \begin{equation*}x^x=e^{ln(x^x)}\end{equation}

    \begin{equation*}x^x=e^{xln(x)}\end{equation}

The power series expansion of e^x is

    \begin{equation*}e^x=1+x+\frac{1}{2!}x^2+\frac{1}{3!}x^3+\frac{1}{4!}x^4+...\end{equation}

    \begin{equation*}\therefore e^{xln(x)}=1+xln(x)+\frac{1}{2!}(xln(x))^2+\frac{1}{3!}(xln(x))^3+...\end{equation}

    \begin{equation*}\therefore e^{xln(x)}=\Sigma_{n=0}^{\infty}(\frac{1}{n!}(xln(x))^n)\end{equation}

Hence \int_0^1{x^x dx}=\int_0^1(\Sigma_{n=0}^{\infty}(\frac{1}{n!}(xln(x))^n dx)

    \begin{equation*}=\Sigma_{n=0}^{\infty}(\frac{1}{n!}\int_0^1xln(x))^n dx)\end{equation}

Let’s consider the integral

(1)   \begin{equation*}\int_0^1 x^n(ln(x))^n dx\end{equation*}

Let u=ln(x) then \frac{du}{dx}=\frac{1}{x} and dx=x du where x=e^u

When x=0, u=-\infty and when x=1, u=0

(2)   \begin{equation*}\int_0^1 x^n(ln(x))^n dx=\int_{-\infty}^0 e^{nu}u^ne^u du\end{equation*}

(3)   \begin{equation*}\int_0^1 x^n(ln(x))^n dx=\int_{-\infty}^0 e^{(n+1)u}u^n du\end{equation*}

Integrate by parts using the tabular method.

SignDifferentiateIntegrate
+u^ne^{(n+1)u}
nu^{n-1}\frac{e^{(n+1)u}}{n+1}
+n(n-1)u^{n-2}\frac{e^{(n+1)u}}{(n+1)^2}
n(n-1)(n-2)u^{n-3}\frac{e^{(n+1)u}}{(n+1)^3}
+\frac{n!}{(n-4)!}u^{n-4}\frac{e^{(n+1)u}}{(n+1)^4}
\vdots\vdots
\frac{n!}{(n-n)!}u^{n-n}\frac{e^{(n+1)u}}{(n+1)^{n}}
(-1)^n0\frac{e^{(n+1)u}}{(n+1)^{n+1}}

When we substitute u=-\infty or u=0 the differentiation column is zero except for \frac{n!}{(n-n)!}u^{n-n}, which is n!,

Thus \int_0^1 x^n(ln(x))^n dx=\frac{e^{(n+1)u}}{(n+1)^{n+1}}}]_{-\infty}^0

    \begin{equation*}=n!\times\frac{e^0}{(n+1)^{n+1}}-0\end{equation}

    \begin{equation*}=\frac{n!}{(n+1)^{n+1}}\end{equation}

Now we just need to think about the sign.

    \begin{equation*}=(-1)^n\frac{n!}{(n+1)^{n+1}}\end{equation}

The integral is now

\int_0^1{x^x dx}=(\Sigma_{n=0}^{\infty}(\frac{1}{n!}( (-1)^n\frac{n!}{(n+1)^{n+1}})

So \int_0^1{x^x dx}=\Sigma_{n=0}^{\infty}( (-1)^n\frac{1}{(n+1)^{n+1}}

Let’s work out some partial sums

n((-1)^n\frac{1}{(n+1)^{n+1}})
5=0.78343
10=0.78343
20=0.78343
100=0.78343

\int_0^1{x^x dx}=0.778343

Leave a Comment

Filed under Definite, Integration, Integration by Parts, Tabular Integration

Integration by Parts using the Tabular Method

(1)   \begin{equation*}\int_0^1x^2e^xdx\end{equation*}

I am going to do this integral in two ways; the traditional method and the tabular method.

Traditional Method

Remember \int{u dv}=u\times v-\int{v du}

Let u=x^2 and dv=e^x

Then du=2x and v=\int{e^x dx}=e^x

    \begin{equation*}\int_0^1{x^2e^x dx}=x^2 \times e^x ]_0^1-\int_0^1{e^x 2x dx}\end{equation}

Now we need to do integration by parts on \int_0^1{e^x 2x dx}

Let u=2x and dv=e^x

Then du=2 and v=e^x

    \begin{equation*}\int_0^1{x^2e^x dx}=x^2 \times e^x ]_0^1-(2x\times e^x]_0^1-\int_0^1{e^x 2 dx})\end{equation}

    \begin{equation*}\int_0^1{x^2e^x dx}=x^2 \times e^x ]_0^1-(2x\times e^x]_0^1-(2e^x )]_0^1)\end{equation}

    \begin{equation*}\int_0^1{x^2e^x dx}=e-(2e-(2e-2))\end{equation}

    \begin{equation*}\int_0^1{x^2e^x dx}=e+2\end{equation}

Tabular Integration

Similar to before, select a u and a dv, u=x^2 and dv=e^x

SignD(ifferentiate)I(ntegrate)
+x^2e^x
2xe^x
+2e^x
0e^x

Stop when the differentiating column reaches zero.

Then we multiply diagonally

(+x^2)(e^x)+(-2x)(e^x)+(+2e^x)

=x^2e^x-2xe^x+2e^x]_0^1

=e-2e+2e-(0-0-2)

=e+2

It is only worth using this method if integration by parts is required more than once. Also, the u has to eventually differentiate to 0.

Let’s try another one

(2)   \begin{equation*}\int{x^3cos(2x) dx}\end{equation*}

Let u=x^3 and dv=cos(2x)

SignDI
+x^3cos(2x)
3x^2\frac{1}{2}sin(2x)
+6x-\frac{1}{4}cos(2x)
6-\frac{1}{8}sin(2x)
+0\frac{1}{16}cos(2x)

\int{x^3cos(2x) dx}=(x^3)(\frac{1}{2}sin(2x))+(-3x^2)(-\frac{1}{4}cos(2x))+(6x)(-\frac{1}{8}sin(2x))+(-6)(\frac{1}{16}cos(2x))+c

=\frac{x^3}{2}sin(2x)+\frac{3x^2}{4}cos(2x)-\frac{3x}{4}sin(2x)-\frac{3}{8}cos(2x)+c

1 Comment

Filed under Integration, Integration by Parts, Tabular Integration

Effect of Function Transformations on Integration

My year 12 Mathematical Methods students have questions like this

Given that f(x) is continuous everywhere and that \int_{4}^{10} f(x) dx=-10, find:

(a) \int_{4}^{10}2x +f(x) dx

(b) \int_{5}^{11} f(x-1) dx

(c) \int_{1}^{3} f(3x+1) dx

(d) \int_{-10}^{-4} -f(-x) dx

(e) \int{10}^{22} f(\frac{x-2}{2}) dx

(f) \int_{-3}^{-9} f(1-x) dx

OT Lee Mathematics Methods Textbook Ex 8.3 question 6

For the most part these questions aren’t too difficult, but the horizontal dilations cause issues.

(a) \int_{4}^{10} 2x +f(x) dx
\int_{4}^{10} 2x  dx +\int_{2}^{10} f(x) dx
(x^2]_4^{10} + (-10)
10^2-4^2-10
=74

(b) \int_{5}^{11} f(x-1) dx
=-10




(c) \int_{1}^{3} f(3x+1) dx
Let u=3x+1
\frac{du}{dx}=3
dx=\frac{du}{3}

When x=1, u=4 and when x=3, u=10
\int_{4}^10 f(u) \frac{du}{3}
=\frac{1}{3}\times (-10)
=\frac{-10}{3}

(d) \int_{-10}^{-4} -f(-x) dx
-\int_{-10}^{-4} f(-x) dx

Let u=-x
\frac{du}{dx}=-1
dx=-du

When x=-4, u=4 and when x=-10, u=10
-\int_{4}^{10} f(u) -dx
=-10

(e) \int_{10}^{22} f(\frac{x-2}{2} dx
Let u=f(\frac{x-2}{2})
\frac{du}{dx}=\frac{1}{2}
\du=2dx

When x=10, u=4 and when x=22, u=10
2\int_{4}^{10} f(u) du
=-20

(f) \int_{-3}^{-9} 2f(1-x) dx
Let u=1-x
\frac{du}{dx}=-1

When x=-3, u=4 and when x=-9, u=10
=-2\int_{4}^{10} f(u) du
=20


Split the integral
Integrate the first part.


This is a horizontal translation (one unit to the right) so the shape of the curve doesn’t change.
The integration bounds have also shifted one unit to the right.




This is a horizontal dilation and translation. The easiest method is to use a change of variable





































Once you get the hang of it, you can skip the change of variable and multiply the value of the definite integral by the scale factor of the horizontal dilation (only if the integration bounds are also changed).

Leave a Comment

Filed under Definite, Integration, Uncategorized, Year 12 Mathematical Methods