Category Archives: Circle Theorems

Circle Geometry Problem

In the diagram, points A, B, C, D and Q lie on a circle centre O, radius 6 cm and diameter BQ, \angle{ABQ}=50^\circ, AB is parallel to DO and point P lies on diameter BQ such that OP=DP=4cm.

(a) Find \angle{BCD}

(b) Determine the length of PC.

\angle{BOD}=180^\circ-50^\circ=130^\circ (Co-interior angles in parallel lines are supplementary.)

\angle{BCD}=\frac{1}{2}\times 130=65^\circ (Angles subtended by the same arc. The angle at the centre is twice the angle at the circumference.)

\angle{BCD}=65^\circ.

Let PC=x

From the intersecting chord theorem

    \begin{equation*}4\times x=2\times 10\end{equation}

    \begin{equation*}4x=20\end{equation}

    \begin{equation*}x=5\end{equation}

PC=5cm


A chord AB of a circle O is extended to C. The straight line bisecting \angle{OAB} meets the circle at E. Let \angle{BAE}=x. Prove that EB bisects \angle{OBC}.

\angle{BAO}=2x (AE bisects \angle {BAO})

\Delta AOB is isosceles (AO=B0 radii of the circle)

\angle{ABO}=2x (Equal angles in isosceles triangle)

Therefore \angle {AOB}=180^\circ-4x (angle sum of a triangle)

\angle {BEA}=90^\circ-2x (angle at the circumference is half angle at the centre)

\angle{ABE}=180^\circ-x-(90^\circ-2x)=90^\circ+x (angle sum of a triangle)

\angle{CBE}=180^\circ-(90^\circ+x)=90^\circ-x (angles on a straight line)

\angle{OBE}=90^\circ+x-2x=90^\circ-x

\angle{OBE}=\angle{CBE}

Hence, BE bisects \angle{OBC}

Leave a Comment

Filed under Circle Theorems, Geometry, Uncategorized, Year 11 Specialist Mathematics

Intersecting Secant Theorem

CD is a tangent to the circle.

Prove c^2=a(a+b)

I am going to add two chords to the circle

Chord AD and BD are added

\angle{BDC}=\angle{CAD} (angles in alternate segments are congruent)

\angle{BCD}=\angle{DCA} (shared angle)

\therefore \Delta BDC\cong \Delta{DAC} (AA)

Hence

\frac{DC}{AC}=\frac{BC}{DC} (Corresponding sides in similar triangles)

\frac{c}{a+b}=\frac{a}{c}

\therefore c^2=a(a+b)

1 Comment

Filed under Circle Theorems, Geometry, Year 11 Specialist Mathematics

Circle Geometry Question 2

One of my Year 11 Specialist students had this question

Triangle ABC touches the given circle at Points P, Q, R and S only. The secant BW touches the circle at V and W.

Diagram not drawn to scale

(a) Determine the lengths of the line segments marked x, y and z, leaving your answers as exact values.

(b) If the length of the line segment QW is 4 units, determine the exact radius of the circle.

(a) We are going to use the Intersecting Secant Theorem – the tangent version

c^2=a\times(a+b)

Hence, we have

    \begin{equation*}30^2=25(25+x+6)\end{equation}

    \begin{equation*}900=25(31+x)\end{equation}

    \begin{equation*}x=5\end{equation}

Then we can use the intersecting chord theorem to find y.

    \begin{equation*}10\times y=6 \times x\end{equation}

    \begin{equation*}10y=30\end{equation}

    \begin{equation*}y=3\end{equation}

Back to the Intersecting Secant Theorem to find z

    \begin{equation*}z^2=4\times 17\end{equation}

    \begin{equation*}z=2\sqrt{17}\end{equation}

(b)


QW is part of a 3-4-5 triangle, therefore \angle{Q}=90^\circ

This is definitely the case of the diagram not being drawn to scale. If \angle{Q}=90^\circ, then the purple line must be the diameter.

We can use pythagoras to find the length of the diameter

    \begin{equation*}(2r)^2=13^2+4^2\end{equation}

    \begin{equation*}4r^2=185\end{equation}

    \begin{equation*}r=\frac{\sqrt{285}}{2}\end{equation}

The radius of the circle is \frac{\sqrt{285}}{2}

Leave a Comment

Filed under Circle Theorems, Geometry, Pythagoras, Year 11 Specialist Mathematics

Circle Geometry Question

In the above diagram O is the centre of the larger circle. A, B,D and E are points on the circumference of the larger circle. A, C, E and 0 are points on the circumference of the smaller circle. Show that \angle{CAB}=\angle{ABC}. AB, AC and BC are straight lines.

AO=OB (radii of the larger circle)

At a line from O to E (it is also a radius of the larger circle)

Let \angle{CAB}=\alpha.

ACEO is a cyclic quadrilateral.

Hence, \angle{CED}=180-\alpha (AECO is a cyclic quadrilateral)

As CB is a straight line \angle{OEB}=180-(180-\alpha)=\alpha.

\Delta OEB is an isosceles triangle.

Therefore, \angle{ABC}=\alpha

Therefore \angle{ABC}=\angle{CAB}

Leave a Comment

Filed under Circle Theorems, Finding an angle, Geometry, Year 11 Specialist Mathematics