Category Archives: Geometry

Geometry Problem

Geometry Snacks by Ed Southall and Vincent Pantaloni

I started by trisecting another side of the triangle

This makes it clearer that the two lines are parallel

Which means the two angles labelled above are corresponding and therefore congruent.

Let the side length be x.

The area of the equilateral triangle is

(1)   \begin{equation*}A=\frac{1}{2}x^2 sin(60)=\frac{\sqrt{3}x^2}{4}\end{equation*}

    \begin{equation*}cos(60)=\frac{y}{\frac{2x}{3}}\end{equation}

    \begin{equation*}y=\frac{x}{3}\end{equation}

Area of right triangle

(2)   \begin{equation*}A=(\frac{1}{2})(\frac{2x}{3})(\frac{x}{3})sin(60)=\frac{\sqrt{3}x^2}{18}\end{equation*}

The fraction of the area is

    \begin{equation*}=\frac{\frac{\sqrt{3}x^2}{18}}{\frac{\sqrt{3}x^2}{4}}=\frac{2}{9}\end{equation}

Leave a Comment

Filed under Algebra, Area, Area of Triangles (Sine), Finding an area, Geometry, Puzzles, Right Trigonometry, Simplifying fractions, Trigonometry

Linear Transformation (Rotation) Question

The unit square is rotated about the origin by 45^\circ anti-clockwise.
(a) Find the matrix of this transformation.
(b) Draw the unit square and its image on the same set of axes.
(c) Find the area of the over lapping region.

Remember the general rotation matrix is

    \begin{equation*}\begin{bmatrix}cos(\theta)&-sin(\theta)\\sin(\theta)&cos(\theta)\end{bmatrix}\end{equation}

Hence

    \begin{equation*}\begin{bmatrix}cos(45)&-sin(45)\\sin(45)&cos(45)\end{bmatrix}=\begin{bmatrix}\frac{1}{\sqrt{2}}&-\frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}\end{bmatrix}\end{equation}

The unit square has co-ordinates

\begin{bmatrix}0 & 1 & 1& 0\\0&0&1&1\end{bmatrix}

Unit Square

Transform the unit square

\begin{bmatrix}\frac{1}{\sqrt{2}}&-\frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}\end{bmatrix}\begin{bmatrix}0 & 1 & 1& 0\\0&0&1&1\end{bmatrix}=\begin{bmatrix}0&\frac{1}{\sqrt{2}}&0&-\frac{1}{\sqrt{2}}\\0&\frac{1}{\sqrt{2}}&\frac{2}{\sqrt{2}}&\frac{1}{\sqrt{2}}\end{bmatrix}

Unit Square and Transformed Unit Square

The overlapping area is the area of \Delta ADC– the area of \Delta EFC

We know \angle{FCE}=45^\circ because the diagonal of a square bisects the angle.

We know\angle{EFC} is a right angle as it’s on a straight line with the vertex of a square.

Hence \Delta EFC is isosceles.

\overline{AC}=\sqrt{1^2+1^2}=\sqrt{2} and \overline{AF}=1, hence \overline{FC}=\sqrt{2}-1

A_{\Delta ADC}=\frac{1}{2}(1)(1)=\frac{1}{2}

A_{\Delta ECF}=\frac{1}{2}(\sqrt{2}-1)(\sqrt{2}-1)

Area of shaded region =\frac{1}{2}-\frac{1}{2}(3-2\sqrt{2})=\sqrt{2}-1

Leave a Comment

Filed under Area, Co-ordinate Geometry, Finding an area, Geometry, Matrices, Transformations, Year 11 Specialist Mathematics

Clock (Geometry Question)

At what time after 2pm will the minute hand over take the hour hand?

Let the distance the minute hand moves be x^\circ. Then the distance the hour hand moves is x-60^\circ (The angle between the hands at 2pm is 60^\circ)

The rate the hour hand moves is R_H=\frac{30}{60}=\frac{1}{2}^\circ per minute, and the rate the minute hand moves is R_M=\frac{360}{60}=6^\circ per minute.

The time is the distance divided by the rate,

    \begin{equation*}\frac{x}{6}=\frac{x-60}{\frac{1}{2}}\end{equation}

    \begin{equation*}\frac{x}{2}=6x-360\end{equation}

    \begin{equation*}360=\frac{11x}{2}\end{equation}

    \begin{equation*}x=65\frac{5}{11}^\circ\end{equation}

As the minute hand moves 65\frac{5}{11}^\circ, the change in time is 65\frac{5}{11}^\circ \div 6=10 minutes and 54 seconds. Hence the time is 2:11pm

Leave a Comment

Filed under Finding an angle, Geometry, Puzzles

Circle Geometry Problem

In the diagram, points A, B, C, D and Q lie on a circle centre O, radius 6 cm and diameter BQ, \angle{ABQ}=50^\circ, AB is parallel to DO and point P lies on diameter BQ such that OP=DP=4cm.

(a) Find \angle{BCD}

(b) Determine the length of PC.

\angle{BOD}=180^\circ-50^\circ=130^\circ (Co-interior angles in parallel lines are supplementary.)

\angle{BCD}=\frac{1}{2}\times 130=65^\circ (Angles subtended by the same arc. The angle at the centre is twice the angle at the circumference.)

\angle{BCD}=65^\circ.

Let PC=x

From the intersecting chord theorem

    \begin{equation*}4\times x=2\times 10\end{equation}

    \begin{equation*}4x=20\end{equation}

    \begin{equation*}x=5\end{equation}

PC=5cm


A chord AB of a circle O is extended to C. The straight line bisecting \angle{OAB} meets the circle at E. Let \angle{BAE}=x. Prove that EB bisects \angle{OBC}.

\angle{BAO}=2x (AE bisects \angle {BAO})

\Delta AOB is isosceles (AO=B0 radii of the circle)

\angle{ABO}=2x (Equal angles in isosceles triangle)

Therefore \angle {AOB}=180^\circ-4x (angle sum of a triangle)

\angle {BEA}=90^\circ-2x (angle at the circumference is half angle at the centre)

\angle{ABE}=180^\circ-x-(90^\circ-2x)=90^\circ+x (angle sum of a triangle)

\angle{CBE}=180^\circ-(90^\circ+x)=90^\circ-x (angles on a straight line)

\angle{OBE}=90^\circ+x-2x=90^\circ-x

\angle{OBE}=\angle{CBE}

Hence, BE bisects \angle{OBC}

Leave a Comment

Filed under Circle Theorems, Geometry, Uncategorized, Year 11 Specialist Mathematics

Geometry Puzzle

Another puzzle from this book

Two ladders are propped up vertically in a narrow passageway between two vertical buildings. The ends of the ladders are 8 metres and 4 metres above the pavement.
Find the height above the ground, T,

\Delta ABC \sim \Delta TEC and \Delta DCB \sim  \Delta TEB (Angle Angle Similarity)

Hence,

(1)   \begin{equation*}\frac{h}{8}=\frac{x}{x+y}\end{equation*}

(2)   \begin{equation*}\frac{h}{4}=\frac{y}{x+y}\end{equation*}

From equation 1 h=\frac{8x}{x+y} and from 2 h=\frac{4y}{x+y}

Hence, \frac{8x}{x+y}=\frac{4y}{x+y}

Therefore, 8x=4y and y=2x

From equation 1

    \begin{equation*}h=\frac{8x}{3x}=\frac{8}{3}\end{equation}

Hence T is 2 \frac{2}{3}m above the ground.

Leave a Comment

Filed under Geometry, Puzzles, Similarity, Simplifying fractions, Solving Equations

Problem Solving

I am came across this problem and was fascinated. It’s from this book

At first I went straight to the 14-sided polygon, and tried to draw the diamonds (parallelograms), but then I thought let’s start smaller and see if there is a pattern.

Clearly a square contains 1 diamond (itself).

Pentagon

It’s not possible with a pentagon.

Hexagon

A hexagon has 6 diamonds

Septagon

I am guessing it’s not possible to fill a regular 7-sided shape with diamonds

It’s not possible with odd numbers of sides. Regular polygons with an odd number of sides have no parallel sides, so we can’t cover it with rhombi (which have opposite sides parallel).

Octagon

An octagon has 6 diamonds.

We know a decoagon has 10 diamonds (from the question)

Let’s put together what we know

n46810
Diamonds13610

These are the triangular numbers, so when n=12 the number of diamonds is 15, and for n=14 it’s 21.

We can work out a rule for calculating the number of diamonds given the number of sides.

Because the difference in the n values is not 1, I am going to get n and D in terms of k and then combine the two equations.

From the above table, n=2k+2

We know this rule is quadratic as the second difference is constant, hence

D=\frac{1}{2}k^2+bk+c

    \begin{equation*}1=\frac{1}{2}+b+c\end{equation}

(1)   \begin{equation*}\frac{1}{2}=b+c\end{equation*}

    \begin{equation*}3=\frac{1}{2}2^2+2b+c\end{equation}

(2)   \begin{equation*}1=2b+c\end{equation*}

Solve simultaneously, subtract equation 1 from equation 2

(3)   \begin{equation*}\frac{1}{2}=b\end{equation*}

Substitute for b=\frac{1}{2} into equation 1

    \begin{equation*}\frac{1}{2}=\frac{1}{2}+c\end{equation}

c=0, therefore D=\frac{1}{2}k^2+\frac{1}{2}k

We know n=2k+2 hence k=\frac{n-2}{2}

Hence D=\frac{1}{2}(\frac{n-2}{2})^2+\frac{1}{2}(\frac{n-2}{2})

D=\frac{1}{8}(n^2-4n+4)+\frac{1}{4}(n-2)=\frac{n^2}{8}-\frac{n}{2}+\frac{1}{2}+\frac{n}{4}-\frac{1}{2}=\frac{n^2}{8}-\frac{n}{4}

    \begin{equation*}D=\frac{n^2}{8}-\frac{n}{4}\end{equation}

Let’s test our rule for n=14

    \begin{equation*}D=\frac{14^2}{8}-\frac{14}{4}=\frac{49}{2}-\frac{7}{2}=\frac{42}{2}=21\end{equation}

Leave a Comment

Filed under Area, Geometry, Interesting Mathematics, Puzzles, Quadratics

Area/Geometry Problem

This problem is from The Geometry Forum Problem of the Week June 1996

In triangle ABC, AC=18 and D is the point on AC for which AD=5. Perpendiculars drawn from D to AB and CB have lengths of 4 and 5 respectively. What is the area of triangle ABC?

I put together a diagram (in Geogebra)

Add points P and Q

Triangle APD and triangle DQC are right angled. Using pythagoras, AP=3 and QC=12

BQDP is a cyclic quadrilateral and BD is the diameter. I am not sure if this is useful, but it is good to notice.

    \begin{equation*}sin(A+B+C)=sin(180)=0\end{equation}

    \begin{equation*}sin((A+C)+B)=sin(A+C)cosB+sinBcos(A+C)=0\end{equation}

    \begin{equation*}cosB(sinAcosC+sinCcosA)+sinB(cosAcosC-sinAsinC)=0\end{equation}

    \begin{equation*}cosB(\frac{4}{5}\times\frac{12}{13}+\frac{5}{13}\times\frac{3}{5})+sinB(\frac{3}{5}\times\frac{12}{13}-\frac{4}{5}\times\frac{5}{13})=0\end{equation}

    \begin{equation*}cosB(\frac{48}{65}+\frac{15}{65})+sinB(\frac{36}{65}-\frac{20}{65})=0\end{equation}

    \begin{equation*}\frac{63}{65}cosB+\frac{16}{65}sinB=0\end{equation}

    \begin{equation*}63cosB+16sinB=0\end{equation}

    \begin{equation*}63+16tanB=0\end{equation}

    \begin{equation*}tanB=\frac{-63}{16}\end{equation}

If tanB=\frac{-63}{16} then sinB=\frac{63}{65}

Now,

    \begin{equation*}\frac{y+12}{sinA}=\frac{18}{sinB}\end{equation}

    \begin{equation*}y+12=\frac{4}{5}(18)\frac{65}{63}\end{equation}

    \begin{equation*}y+12=\frac{104}{7}\end{equation}

Hence the Area is

    \begin{equation*}A=\frac{1}{2}(18)(\frac{104}{7})sinC\end{equation}

    \begin{equation*}A=\frac{1}{2}(18)(\frac{104}{7})\frac{5}{13}\end{equation}

    \begin{equation*}A=\frac{360}{7}=51.43\end{equation}

Leave a Comment

Filed under Area, Finding an area, Geometry, Identities, Non-Right Trigonometry, Pythagoras, Trigonometry

Using a Vector Method to Find an Angle Bisector

Points A and B are defined by the position vectors \mathbf{a}=3\mathbf{i}+4\mathbf{j} and \mathbf{b}=12\mathbf{i}+5\mathbf{j}.

Find a vector that bisects \angle{AOB}.

If we think about how we add vectors using the parallelogram rule

Finding the resultant vector using the parallelogram rule

we can take advantage of the geometric properties of parallelograms (or of a rhombus).

If \mathbf{a} and \mathbf{b} are unit vectors, then the parallelogram is a rhombus, and the diagonal (i.e the resultant) bisects the angle.

We need to find the sum of the unit vectors.

|\mathbf{a}|=\sqrt{3^2+4^2}=5

\therefore \hat{\mathbf{a}}=\frac{3}{5}\mathbf{i}+\frac{4}{5}\mathbf{j}

|\mathbf{b}|=\sqrt{12^2+5^2}=13

\therefore \hat{\mathbf{b}}=\frac{12}{13}\mathbf{i}+\frac{5}{13}\mathbf{j}

The vector that bisects \angle{AOB} is

\frac{3}{5}\mathbf{i}+\frac{4}{5}\mathbf{j}+\frac{12}{13}\mathbf{i}+\frac{5}{13}\mathbf{j}=\frac{99}{65}\mathbf{i}+\frac{64}{65}\mathbf{j}

Leave a Comment

Filed under Geometry, Vectors, Year 11 Specialist Mathematics

Area of Regular Polygons

Finding the area of a regular polygon when you know the side length

Find the area of an n-sided regular polygon if you know the side length, l.

An octagon for a visual reference

Find the h of the triangle in terms of l and theta.

tan(\theta)=\frac{\frac{l}{2}}{h}

h=\frac{l}{2tan(\theta)}

Remember the area of a triangle is A=\frac{1}{2}bh

Hence, A=\frac{1}{2} l \times \frac{l}{2tan(\theta)}=\frac{l^2}{4tan(\theta)}

And \theta=\frac{360}{2n}=\frac{180}{n}

Therefore A=\frac{l^2}{4tan(\frac{180}{n})}

There are n triangles in an n-sided polygon

(1)   \begin{equation*}A=\frac{nl^2}{4tan(\frac{180}{n})}\end{equation*}

Find the area of a hexagon with side length 10cm.
A=\frac{6\times10^2}{4tan(\frac{180}{6})}
A=\frac{600}{4(\frac{1}{\sqrt{3}})}
A=150\sqrt{3} cm^2

Finding the area of a polygon if you know the inradius or the apothem

The apothem and the inradius are the same. It is the radius of the incircle.

Find the area of the triangle in terms of a and theta.

tan(\theta)=\frac{\frac{l}{2}}{a}

l=2atan(\theta)

A=\frac{1}{2}bh

A=\frac{1}{2}2atan(\theta)a=a^2tan(\theta)

And \theta=\frac{180}{n}

Hence for an n-sided polygon

(2)   \begin{equation*}A=na^2tan(\frac{180}{n})\end{equation*}

Find the area of a regular pentagon with apothem 4.5cm
A=5\times 4.5^2tan(\frac{180}{5})
A=73.56cm^2

Finding the area of a regular polygon given the circumradius

The circumradius is the radius of the circumscribed circle (R in the diagram above)

Remember the area of triangle formula

A=\frac{1}{2}absin(\theta)

A=\frac{1}{2}R^2sin(\theta)

\theta=\frac{360}{n}

Hence, A=\frac{1}{2}R^2sin(\frac{360}{n})

Hence, for an n-sided polygon

(3)   \begin{equation*}A=\frac{nR^2sin(\frac{360}{n})}{2}\end{equation*}

Find the area of a regular octagon inscribed in a circle of radius 10cm.
A=\frac{8\times 10^2sin(45)}{2}
A=200\sqrt{2}cm^2

Leave a Comment

Filed under Area, Area of Triangles (Sine), Finding an area, Non-Right Trigonometry, Regular Polygons, Right Trigonometry, Year 11 Mathematical Methods

Intersecting Secant Theorem

CD is a tangent to the circle.

Prove c^2=a(a+b)

I am going to add two chords to the circle

Chord AD and BD are added

\angle{BDC}=\angle{CAD} (angles in alternate segments are congruent)

\angle{BCD}=\angle{DCA} (shared angle)

\therefore \Delta BDC\cong \Delta{DAC} (AA)

Hence

\frac{DC}{AC}=\frac{BC}{DC} (Corresponding sides in similar triangles)

\frac{c}{a+b}=\frac{a}{c}

\therefore c^2=a(a+b)

1 Comment

Filed under Circle Theorems, Geometry, Year 11 Specialist Mathematics