Category Archives: Co-ordinate Geometry

Eigenvalues and Eigenvectors

My Year 11 Specialist students have had an investigation which involves finding eigenvalues, eigenvectors and lines that are invariant under a particular linear transformation. This is not part of the course, but I feel for teachers who have to create new investigations every year.

Let’s find the eigenvalues and eigenvectors for matrix T=\begin{bmatrix}-\frac{1}{2}&-\frac{\sqrt{3}}{2}\\-\frac{\sqrt{3}}{2}&\frac{1}{2}\end{bmatrix}

We want to find \lambda such that

(1)   \begin{equation*}T\textbf{v}=\lambda \textbf{v}\end{equation*}

We solve det(T-\lambda I)=0

    \begin{equation*}T-\lambda I=\begin{bmatrix}-\frac{1}{2}-\lambda&-\frac{\sqrt{3}}{2}\\-\frac{\sqrt{3}}{2}&\frac{1}{2}-\lambda\end{bmatrix}\end{equation}

det\left (T-\lambda I \right )=\left (-\frac{1}{2}-\lambda \right ) \left ( \frac{1}{2}-\lambda \right )- \left (-\frac{\sqrt{3}}{2} \right ) \left ( -\frac{\sqrt{3}}{2} \right )

Hence 0=\lambda^2-1 and \lambda=\pm 1

When \lambda=1, \begin{bmatrix}-\frac{1}{2}&-\frac{\sqrt{3}}{2}\\-\frac{\sqrt{3}}{2}&\frac{1}{2}\end{bmatrix}\begin{bmatrix}x_1\\x_2\end{bmatrix}=\begin{bmatrix}x_1\\x_2\end{bmatrix}

Hence, -\frac{x_1}{2}-\frac{\sqrt{3}x_2}{2}=x_1

x_2=-\frac{3x_1}{\sqrt{3}} and the eigenvector is \begin{bmatrix}1\\-\sqrt{3}\end{bmatrix}

When \lambda=-1, \begin{bmatrix}-\frac{1}{2}&-\frac{\sqrt{3}}{2}\\-\frac{\sqrt{3}}{2}&\frac{1}{2}\end{bmatrix}\begin{bmatrix}x_1\\x_2\end{bmatrix}=\begin{bmatrix}-x_1\\-x_2\end{bmatrix}

Hence, -\frac{x_1}{2}-\frac{\sqrt{3}x_2}{2}=-x_1

x_2=\frac{x_1}{\sqrt{3}} and the eigenvector is \begin{bmatrix}1\\\frac{1}{\sqrt{3}}\end{bmatrix}

Which means the invariant lines are y=-\sqrt{3}x and y=\frac{x}{\sqrt{3}}

A quadrilateral with vertices on our lines
The vertices after they have been transformed – A and C remain in the same place (they are on the \lambda=1 line)
The quadrilateral (purple) after the transformation

Leave a Comment

Filed under Co-ordinate Geometry, Eigenvalues, Matrices, Transformations, Vectors, Year 11 Specialist Mathematics

Linear Transformation (Rotation) Question

The unit square is rotated about the origin by 45^\circ anti-clockwise.
(a) Find the matrix of this transformation.
(b) Draw the unit square and its image on the same set of axes.
(c) Find the area of the over lapping region.

Remember the general rotation matrix is

    \begin{equation*}\begin{bmatrix}cos(\theta)&-sin(\theta)\\sin(\theta)&cos(\theta)\end{bmatrix}\end{equation}

Hence

    \begin{equation*}\begin{bmatrix}cos(45)&-sin(45)\\sin(45)&cos(45)\end{bmatrix}=\begin{bmatrix}\frac{1}{\sqrt{2}}&-\frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}\end{bmatrix}\end{equation}

The unit square has co-ordinates

\begin{bmatrix}0 & 1 & 1& 0\\0&0&1&1\end{bmatrix}

Unit Square

Transform the unit square

\begin{bmatrix}\frac{1}{\sqrt{2}}&-\frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}\end{bmatrix}\begin{bmatrix}0 & 1 & 1& 0\\0&0&1&1\end{bmatrix}=\begin{bmatrix}0&\frac{1}{\sqrt{2}}&0&-\frac{1}{\sqrt{2}}\\0&\frac{1}{\sqrt{2}}&\frac{2}{\sqrt{2}}&\frac{1}{\sqrt{2}}\end{bmatrix}

Unit Square and Transformed Unit Square

The overlapping area is the area of \Delta ADC– the area of \Delta EFC

We know \angle{FCE}=45^\circ because the diagonal of a square bisects the angle.

We know\angle{EFC} is a right angle as it’s on a straight line with the vertex of a square.

Hence \Delta EFC is isosceles.

\overline{AC}=\sqrt{1^2+1^2}=\sqrt{2} and \overline{AF}=1, hence \overline{FC}=\sqrt{2}-1

A_{\Delta ADC}=\frac{1}{2}(1)(1)=\frac{1}{2}

A_{\Delta ECF}=\frac{1}{2}(\sqrt{2}-1)(\sqrt{2}-1)

Area of shaded region =\frac{1}{2}-\frac{1}{2}(3-2\sqrt{2})=\sqrt{2}-1

Leave a Comment

Filed under Area, Co-ordinate Geometry, Finding an area, Geometry, Matrices, Transformations, Year 11 Specialist Mathematics

Midpoint

I find many students struggle with the formal notation for calculating midpoint.

The idea of finding halfway between the x and y co-ordinates seems to resonate.

You can then introduce the formula and use that as a way of getting to grips with the distance formula and the gradient formula.

My notes on midpoint.

My notes on gradient.

More on gradient distance between points later.

Leave a Comment

Filed under Co-ordinate Geometry