Category Archives: Fractions

Converting base 10 numbers to base 2

Converting integers to base 2 is reasonably easy.

For example, what is 82 in base 2?

Think about powers of 2

n2^n
01 (‘ones’)
12 (‘tens’)
24 (‘hundreds)
38 (‘thousands’)

Make 82 the sum of powers of 2.

82=64+16+2=1\times 2^6+0\times 2^5+ 1\times 2^4+0\times 2^3+0\times 2^2+1 \times 2^1+0\times 2^0=1010010

We follow the same approach for real numbers

n2^n
-3\frac{1}{8}=0.125
-2\frac{1}{4}=0.25
-1\frac{1}{2}=0.5
01 (‘ones’)
12 (‘tens’)
24 (‘hundreds)
38 (‘thousands’)

Convert 0.765625 to base 2

0.765625\times 2=1.53125 the first number is 1

0.53125\times 2=1.0625 the second number is 1

0.0625\times 2=0.125 the third number is 0

0.125\times 2=0.25 the fourth number is 0

0.25\times 2=0.5 the fifth number is 0

0.5\times 2=1 the sixth number is 1 and we have finished

0.765625=0.110001_2

What about something like 2.\overline{4}?

The non-decimal part 2=10

0.\overline{4}\times 2=0.\overline{8} first number is zero

0\overline{8}\times 2=1.\overline{7} second number is 1

0.\overline{7}\times 2=1.\overline{5} third number is 1

0.\overline{5}\times 2=1.\overline{1} fourth number is 1

0.\overline{1}\times 2=0.\overline{2} fifth number is 0

0.\overline{2}\times 2=0.\overline{4} sixth number is 0

We are back to where we started, so 2.\overline{4}=10.0111000111000..._2=10.\overline{0.11100}_2

Leave a Comment

Filed under Arithmetic, Decimals, Fractions, Number Bases

Synthetic Division (for factorising and/or solving polynomials)

I use synthetic division to factorise polynomials with a degree greater than 2. For example, f(x)=x^3+2x^2-5x-6

It works best with monic polynomials but can be adapted to non-monic ones (see example below).

The only problem is that you need to find a root to start.

Try the factors of -6 i.e. (-1, 1, 2, -2, 3, -3, 6, -6)

f(-1)=(-1)^3+2(-1)^2-5(-1)-6=0

Hence, x=-1 is a root and (x+1) is a factor of the polynomial.

Set up as follows

Bring the first number down

Multiply by the root and place under the second co-efficient

Add down

Repeat the process

The numbers at the bottom (1, 1, -6) are the coefficients of the polynomial factor.

We now know x^3+2x^2-5x-6=(x+1)(x^2+x-6).

We can factorise the quadratic in the usual way.

x^2+x-6=(x+3)(x-2)

Hence x^3+2x^2-5x-6=(x+1)(x+3)(x-2).

Let’s try a non-monic example

Factorise 6x^4+39x^3+91x^2+89x+30

I know -2 is a root. Otherwise I would try the factors of 30.

Use synthetic division

Because this was non-monic we need to divide our new co-efficients (6, 27, 37, 15) by 6 (the co-efficient of the x^4 term)

x^3+\frac{9}{2}x^2+\frac{37}{6}+\frac{5}{2}

We now need to go again. I know that \frac{-3}{2} is a root and (2x+3) is a factor.

Our quadratic factor is x^2+3x+5/3, which is 3x^2+9x+5.

The quadratic factor doesn’t have integer factors so,

6x^4+39x^3+91x^2+89x+30=(x+2)(2x+3)(3x^2+9x+5)

I think this is much quicker than polynomial long division.

Leave a Comment

Filed under Algebra, Factorising, Factorising, Fractions, Polynomials, Quadratic, Simplifying fractions, Solving Equations

Converting recurring (non-terminating) decimals to fractions

The easiest approach is to jump right in with some examples.

Example 1

Convert 0.\overline{5} to a fraction.

Let x=0.\overline{5}

(1)   \begin{equation*}x=0.\overline{5}\end{equation*}

(2)   \begin{equation*}10x=5.\overline{5}\end{equation*}

Subtract equation 1 from equation 2

    \begin{equation*}9x=5\end{equation}

Hence x=\frac{5}{9} so 0.\overline{5}=\frac{5}{9}

Example 2

Convert 0.\overline{12} to a fraction.

Let x=0.\overline{12}

(3)   \begin{equation*}x=0.\overline{12}\end{equation*}

(4)   \begin{equation*}100x=12.\overline{12}\end{equation*}

Subtract equation 3 from equation 4.

    \begin{equation*}99x=12\end{equation}

    \begin{equation*}x=\frac{12}{99}=\frac{4}{33}\end{equation}

Example 3

Convert 0.1\overline{23} to a fraction

Let x=0.1\overline{23}

(5)   \begin{equation*}x=0.1\overline{23}\end{equation*}

(6)   \begin{equation*}10x=1.\overline{23}\end{equation*}

(7)   \begin{equation*}1000x=123.\overline{23}\end{equation*}

Subtract equation 6 from equation 7

    \begin{equation*}990x=122\end{equation}

    \begin{equation*}x=\frac{122}{990}=\frac{61}{495}\end{equation}

Our aim is to manipulate the recurring decimal to create two numbers each which have only the repeated digits after the decimal point.

One more example.

Example 4

Convert 3.4\overline{56} to a fraction

Let x=3.4\overline{56}

If I multiply by 10, then I will have 34.\overline{56} – only repeated digits after the decimal point.

If I multiply by 1000, then I will have 3456.\overline{56}– only repeated digits after the decimal point.

So I get,

    \begin{equation*}990x=3422\end{equation}

    \begin{equation*}x=\frac{3422}{990}=3\frac{226}{495}\end{equation}

You can also use your Casio classpad to do the conversion. Although I think it is easier just to do it yourself.

Let’s think about example 4,

3.4\overline{56}=3.4+\frac{56}{1000}+\frac{56}{100000}+\frac{56}{10000000}+...

Which is

3.4+\frac{56}{1000\times 100^0}+\frac{56}{1000\times100^1}+\frac{56}{1000\times 100^2}...

3.4+\Sigma_{x=0}^\infty(\frac{56}{1000\times 100^x})

Leave a Comment

Filed under Arithmetic, Decimals, Fractions, Year 11 Specialist Mathematics

Fractions to decimals

People usually know some fractions as decimals, for example

    \[\frac{1}{4}=0.25\ \textnormal{or }\frac{4}{5}=0.8\]

And denominators that are powers of ten are also easy,

    \[\frac{47}{100}=0.47\ \textnormal{or }\frac{256}{1000}=0.256\]

But what if it is something else? One that you don’t know. For example,

    \[\frac{5}{12}\ \textnormal{or }\frac{15}{37}\]

I like to do these as a long division

Leave a Comment

Filed under Arithmetic, Decimals, Fractions