Category Archives: Decimals

Converting base 10 numbers to base 2

Converting integers to base 2 is reasonably easy.

For example, what is 82 in base 2?

Think about powers of 2

n2^n
01 (‘ones’)
12 (‘tens’)
24 (‘hundreds)
38 (‘thousands’)

Make 82 the sum of powers of 2.

82=64+16+2=1\times 2^6+0\times 2^5+ 1\times 2^4+0\times 2^3+0\times 2^2+1 \times 2^1+0\times 2^0=1010010

We follow the same approach for real numbers

n2^n
-3\frac{1}{8}=0.125
-2\frac{1}{4}=0.25
-1\frac{1}{2}=0.5
01 (‘ones’)
12 (‘tens’)
24 (‘hundreds)
38 (‘thousands’)

Convert 0.765625 to base 2

0.765625\times 2=1.53125 the first number is 1

0.53125\times 2=1.0625 the second number is 1

0.0625\times 2=0.125 the third number is 0

0.125\times 2=0.25 the fourth number is 0

0.25\times 2=0.5 the fifth number is 0

0.5\times 2=1 the sixth number is 1 and we have finished

0.765625=0.110001_2

What about something like 2.\overline{4}?

The non-decimal part 2=10

0.\overline{4}\times 2=0.\overline{8} first number is zero

0\overline{8}\times 2=1.\overline{7} second number is 1

0.\overline{7}\times 2=1.\overline{5} third number is 1

0.\overline{5}\times 2=1.\overline{1} fourth number is 1

0.\overline{1}\times 2=0.\overline{2} fifth number is 0

0.\overline{2}\times 2=0.\overline{4} sixth number is 0

We are back to where we started, so 2.\overline{4}=10.0111000111000..._2=10.\overline{0.11100}_2

Leave a Comment

Filed under Arithmetic, Decimals, Fractions, Number Bases

Converting recurring (non-terminating) decimals to fractions

The easiest approach is to jump right in with some examples.

Example 1

Convert 0.\overline{5} to a fraction.

Let x=0.\overline{5}

(1)   \begin{equation*}x=0.\overline{5}\end{equation*}

(2)   \begin{equation*}10x=5.\overline{5}\end{equation*}

Subtract equation 1 from equation 2

    \begin{equation*}9x=5\end{equation}

Hence x=\frac{5}{9} so 0.\overline{5}=\frac{5}{9}

Example 2

Convert 0.\overline{12} to a fraction.

Let x=0.\overline{12}

(3)   \begin{equation*}x=0.\overline{12}\end{equation*}

(4)   \begin{equation*}100x=12.\overline{12}\end{equation*}

Subtract equation 3 from equation 4.

    \begin{equation*}99x=12\end{equation}

    \begin{equation*}x=\frac{12}{99}=\frac{4}{33}\end{equation}

Example 3

Convert 0.1\overline{23} to a fraction

Let x=0.1\overline{23}

(5)   \begin{equation*}x=0.1\overline{23}\end{equation*}

(6)   \begin{equation*}10x=1.\overline{23}\end{equation*}

(7)   \begin{equation*}1000x=123.\overline{23}\end{equation*}

Subtract equation 6 from equation 7

    \begin{equation*}990x=122\end{equation}

    \begin{equation*}x=\frac{122}{990}=\frac{61}{495}\end{equation}

Our aim is to manipulate the recurring decimal to create two numbers each which have only the repeated digits after the decimal point.

One more example.

Example 4

Convert 3.4\overline{56} to a fraction

Let x=3.4\overline{56}

If I multiply by 10, then I will have 34.\overline{56} – only repeated digits after the decimal point.

If I multiply by 1000, then I will have 3456.\overline{56}– only repeated digits after the decimal point.

So I get,

    \begin{equation*}990x=3422\end{equation}

    \begin{equation*}x=\frac{3422}{990}=3\frac{226}{495}\end{equation}

You can also use your Casio classpad to do the conversion. Although I think it is easier just to do it yourself.

Let’s think about example 4,

3.4\overline{56}=3.4+\frac{56}{1000}+\frac{56}{100000}+\frac{56}{10000000}+...

Which is

3.4+\frac{56}{1000\times 100^0}+\frac{56}{1000\times100^1}+\frac{56}{1000\times 100^2}...

3.4+\Sigma_{x=0}^\infty(\frac{56}{1000\times 100^x})

Leave a Comment

Filed under Arithmetic, Decimals, Fractions, Year 11 Specialist Mathematics

Fractions to decimals

People usually know some fractions as decimals, for example

    \[\frac{1}{4}=0.25\ \textnormal{or }\frac{4}{5}=0.8\]

And denominators that are powers of ten are also easy,

    \[\frac{47}{100}=0.47\ \textnormal{or }\frac{256}{1000}=0.256\]

But what if it is something else? One that you don’t know. For example,

    \[\frac{5}{12}\ \textnormal{or }\frac{15}{37}\]

I like to do these as a long division

Leave a Comment

Filed under Arithmetic, Decimals, Fractions