Category Archives: Algebra

Divisibility Rule for 11

I was working on a question and involved 11 and I wondered what the divisibility rule was?

So then I had a bit of a think about it.

Let N be a number divisible by 11. The N (mod11)=0

    \begin{equation*}N=a_n\times10^n+a_{n-1}\times10^{n-1}+a_{n-2}\times10^{n-2}+...+a_0\times10^0\end{equation}

    \begin{equation*}0=a_n\times10^n (mod11)+a_{n-1}\times10^{n-1}(mod11)+a_{n-2}\times10^{n-2}(mod11)+...+a_0\times10^0(mod11)\end{equation}

Now 10 (mod11)=10 which is congruent to -1 because 10-(-1)=11, which is a multiple of 11.

Thus

    \begin{equation*}0=a_n(-1)^n+a_{n-1}(-1)^{n-1}+a_{n-2}(-1)^{n-2}+...+a_0(-1)^0\end{equation}

Odd powers will be negative and even positive.

So if we start at one end of the number and add every second digit (i.e. first digit plus third digit plus fifth digit etc.) and then subtract the other digits (i.e. second digit, fourth digit, six digit, etc.), if that equals zero then the number is divisible by 11.

For example, is 1756238 divisible by 11?

1+5+2+8-7-6-3=16-16=0

Hence 1756238 is divisible by 11

Leave a Comment

Filed under Algebra, Arithmetic, Divisibility, Index Laws, Interesting Mathematics, Number Bases

Deriving the sum formula for an Arithmetic Progression

Arithmetic progressions (or arithmetic sequences) are sequences with a common difference (i.e. the same number is added or subtracted to get the next number in the sequence).

For example,

2, 5, 8, 11, 14, ...

or

12,10, 8, 6, 4, ...

The n^{th} term of an arithmetic progression is T_n=a+(n-1)d where a is the first term and d is the common difference.

i.e. For the sequence above, T_4=12+(4-1)(-2)=6

An arithmetic series is the sum of the arithmetic progression.

For example, if the sequence is

3, 7, 11, 15, ...

then S_1=3, S_2=3+7=10, S_3=3+7+11=21

The series is also a sequence and we are going to find the general term, S_n.

    \begin{equation*}S_n=T_1+T_2+T_3+...+T_n\end{equation}

which we can write as

    \begin{equation*}S_n=a+a+d+a+2d+...+a+(n-1)d\end{equation}

Now, I am going to write that in reverse order (to make the next bit more obvious)

    \begin{equation*}S_n=a+(n-1)d+a+(n-2)d+a+(n-3)d+ ... +a\end{equation}

I am going to add the two versions of S_n together

Each term has an a and there are n terms, so we now have 2na. The d terms, we going to group together

d+(n-1)d+2d+(n-2)d+3d+(n-3)d+ ... +(n-1)d+d

Which simplifies to nd+nd+nd+ ...+nd and we have (n-1) d terms. So this part of the sum is (n-10nd

Thus we have

    \begin{equation*}2S_n=2an+(n-1)nd\end{equation}

Which simplifies to

(1)   \begin{equation*}S_n=\frac{n}{2}(2a+(n-1)d)\end{equation*}

Let’s test it, remember the sequence 3, 7, 11, 15, .... We know S_3=21

    \begin{equation*}S_3=\frac{3}{2}(2(3)+(3-1)(4))=\frac{3}{2}(14)=21\end{equation}

Leave a Comment

Filed under Algebra, Arithmetic, Sequences, Year 11 Mathematical Methods

Area Problem

Two rectangular garden beds have a combined area of 40m^2. The larger bed has twice the perimeter of the smaller and the larger side of the smaller bed is equal to the smaller side of the larger bed. If the two beds are not similar, and if all edges are a whole number of metres, what is the length, in metres, of the longer side of the larger bed?
AMC 2007 S.14

Let’s draw a diagram

From the information in the question, we know

(1)   \begin{equation*}xy+xz=40\end{equation*}

and

    \begin{equation*}2x+2y=4x+4z\end{equation}

    \begin{equation*}x+y=2x+2z\end{equation}

    \begin{equation*}x+y=2x+2z\end{equation}

(2)   \begin{equation*}y=x+2z\end{equation*}

Equation 1 becomes

    \begin{equation*}x(x+3z)=40\end{equation}

As the sides are whole numbers, consider the factors of 40.

1, 2, 4, 5, 8, 10, 20, 40

Remember z<x<y

xx+3zzyPerimeter LargePerimeter SmallComment
2206x must be greater than z
410282(4+8)=242(2+4)=12This one works
58172(5+7)=242(5+1)=12This one also works
810\frac{2}{3}z not a whole number
104z<0Not possible
202z<0
Not possible
401z<0Not possible

There are two possibilities

The large garden bed could be 4 by 8 and the smaller 4 by 2 (Area 40 Perimeters 24 and 12)

or

The large garden bed could be 5 by 7 and the smaller 5 by 1 (Area 40 Perimeters 24 and 12)

Leave a Comment

Filed under Area, Interesting Mathematics, Measurement, Puzzles, Solving Equations, Year 8 Mathematics

Trig Identities and Exact Values

My Year 11 Specialist Mathematics students are working on Trig identities. We came across this question

Without the use of a calculator, evaluate
(a) cos20^\circ\times cos40^\circ\times cos80^\circ

(b)cos(\frac{\pi}{7})\times cos(\frac{2\pi}{7})\times cos(\frac{4\pi}{7})

OT Lee Year 11 Specialist Mathematics textbook

I spent a bit of time thinking about the question. Can you use a product to sum identity twice? But I was always being left with an angle that doesn’t have a nice exact value.

I tried a few things, had a chat to Meta AI, and finally stumbled upon this method.

Remember

    \begin{equation*}sin(2x)=2sin(x)cos(x)\end{equation}

Which can be rearranged to

    \begin{equation*}cos(x)=\frac{sin(2x)}{sin(x)}\end{equation}

(a) cos20^\circ\times cos40^\circ\times cos80^\circ=\frac{sin(40)}{2sin(20)}\frac{sin(80)}{2sin(40)}\frac{sin(160)}{2sin(80)}

Which simplifies to

    \begin{equation*}\frac{sin(160)}{8sin(20)}\end{equation}

Now sin(160)=sin(20)

Hence cos20^\circ\times cos40^\circ\times cos80^\circ=\frac{1}{8}

And we will do the same for part (b)

cos(\frac{\pi}{7})\times cos(\frac{2\pi}{7})\times cos(\frac{4\pi}{7})=\frac{sin(\frac{2\pi}{7})}{2sin(\frac{\pi}{7})}\frac{sin(\frac{4\pi}{7})}{2sin(\frac{2\pi}{7})}\frac{sin(\frac{8\pi}{7})}{2sin(\frac{4\pi}{7})}

Which simplifies to

cos(\frac{\pi}{7})\times cos(\frac{2\pi}{7})\times cos(\frac{4\pi}{7})=\frac{sin(\frac{8\pi}{7})}{8sin(\frac{\pi}{7})}

Now sin(\frac{8\pi}{7})=-sin(\frac{\pi}{7})

Hence cos(\frac{\pi}{7})\times cos(\frac{2\pi}{7})\times cos(\frac{4\pi}{7})=\frac{-1}{8}

And then I had to test them on my Classpad.

Leave a Comment

Filed under Classpad Skills, Identities, Simplifying fractions, Trigonometry, Year 11 Specialist Mathematics

Trigonometric Exact Value

Using an appropriate double angle identity, find the exact value of
cos(\frac{\pi}{12})

The double angle identity for sine is

(1)   \begin{equation*}cos(2A)=cos^2A-sin^2A=2cos^2A-1=1-2sin^2A\end{equation*}

That means \frac{\pi}{12} is either 2A or A.

It must be A as 2\times\frac{\pi}{12}=\frac{\pi}{6} as there are exact values for \frac{\pi}{6}

Hence,

    \begin{equation*}cos{\frac{\pi}{6}}=2cos^2{\frac{\pi}{12}}-1\end{equation}

    \begin{equation*}\frac{\sqrt{3}}{2}=2cos^2{\frac{\pi}{12}}-1\end{equation}

    \begin{equation*}\frac{\sqrt{3}}{2}+1=2cos^2{\frac{\pi}{12}}\end{equation}

    \begin{equation*}\frac{\frac{\sqrt{3}}{2}+1}{2}=cos^2{\frac{\pi}{12}}\end{equation}

    \begin{equation*}\frac{\sqrt{3}+2}{4}=cos^2{\frac{\pi}{12}}\end{equation}

    \begin{equation*}\sqrt{\frac{\sqrt{3}+2}{4}}=cos{\frac{\pi}{12}}\end{equation}

As \frac{\pi}{12} is in the first quadrant, we don’t need to consider the negative version.

    \begin{equation*}cos(\frac{\pi}{12})=\frac{\sqrt{3}+2}{2}\end{equation}

Leave a Comment

Filed under Algebra, Identities, Trigonometry, Year 11 Mathematical Methods

Trig Identities – Addition and Subtraction

Deriving the addition and subtraction trigonometric identities.

We will start with cosine, and use the result to derive the remaining identities.

Proving cos(A-B)=cos(A)cos(B)+sin(A)(sin(B).

A and B are represented in the unit circle below.

Remember P(x_1,y_1)=(cos(A), sin(A)) and Q(x_2, y_2)=(cos(B), sin(B))

Using the cosine rule and triangle OPQ, find PQ

    \begin{equation*}(PQ)^2=1^2+1^2-2(1)(1)cos(A-B)\end{equation}

    \begin{equation*}(PQ)^2=2-2cos(A-B)\end{equation}

Using the distance between points, find PQ

    \begin{equation*}(PQ)^2=(x_1-x_2)^2+(y_1-y_2)^2\end{equation}

    \begin{equation*}(PQ)^2=(cosA-cosB)^2+(sinA-sinB)^2\end{equation}

(PQ)^2=cos^2A-2cosAcosB+cos^2B+sin^2A-2sinAsinB+sin^2B

Remember the Pythagorean identity

    \begin{equation*}cos^2\theta+sin^2\theta=1\end{equation}

    \begin{equation*}(PQ)^2=2-2cosAcosB-2sinAsinB\end{equation}

Hence

    \begin{equation*}2-2cos(A-B)=2-2cosAcosB-2sinAsinB\end{equation}

(1)   \begin{equation*}cos(A-B)=cosAcosB+sinAsinB\end{equation*}

We can then use this identity to find cos(A+B).

    \begin{equation*}cos(A+B)=cos(A-(-B))\end{equation}

    \begin{equation*}cos(A-(-B))=cos(A)cos(-B)+sinAsin(-B)\end{equation}

Remember cos(-B)=cos(B) and sin(-B)=-sin(B)

    \begin{equation*}cos(A-(-B))=cosAcosB-sinAsinB\end{equation}

(2)   \begin{equation*}cos(A+B)=cosAcosB-sinAsinB\end{equation*}

We can also find sin(A+B)

Remember, sin\theta=cos(\frac{\pi}{2}-\theta)

    \begin{equation*}sin(A+B)=cos(\frac{\pi}{2}-(A+B))\end{equation}

    \begin{equation*}sin(A+B)=cos((\frac{\pi}{2}-A)-B)\end{equation}

    \begin{equation*}sin(A+B)=cos(\frac{\pi}{2}-A)cosB+sin(\frac{\pi}{2}-A)sinB\end{equation}

(3)   \begin{equation*}sin(A+B)=sinAcosB+cosAsinB\end{equation*}

We can use equation 2 to find sin(A-B)

    \begin{equation*}sin(A-B)=sin(A+(-B))\end{equation}

    \begin{equation*}sin(A+(-B))=sinAcos(-B)+cosAsin(-B)\end{equation}

    \begin{equation*}sin(A+(-B))=sinAcos(B)-cosAsin(B)\end{equation}

(4)   \begin{equation*}sin(A-B)=sinAcos(B)-cosAsin(B)\end{equation*}

And we can use both the sine and cosine identities to find tan(A+B)

Remember tan\theta=\frac{sin\theta}{cos\theta}

    \begin{equation*}tan(A+B)=\frac{sin(A+B)}{cos(A+B)}\end{equation}

    \begin{equation*}=\frac{sinAcosB+cosAsinB}{cosAcosB-sinAsinB}\end{equation}

    \begin{equation*}=\frac{sinAcosB+cosAsinB}{cosAcosB-sinAsinB}\times \frac{cosAcosB}{cosAcosB}\end{equation}

    \begin{equation*}=\frac{\frac{sinAcosB}{cosAcosB}+\frac{cosAsinB}{cosAcosB}}{\frac{cosAcosB}{cosAcosB}+\frac{sinAsinB}{cosAcosB}}\end{equation}

    \begin{equation*}=\frac{tanA+tanB}{1-tanAtanB}\end{equation}

(5)   \begin{equation*}tan(A+B)=\frac{tanA+tanB}{1-tanAtanB}\end{equation*}

and

(6)   \begin{equation*}tan(A-B)=\frac{tanA-tanB}{1+tanAtanB}\end{equation*}

    \begin{equation*}cos(A\pm B)=cosAcosB\mp sinAsinB\end{equation}


    \begin{equation*}sin(A\pm B)=sinAcosB\pm cosAsinB\end{equation}


    \begin{equation*}tan(A \pm B)=\frac{tan A \pm tanB}{1 \mp tanAtanB}\end{equation}

Leave a Comment

Filed under Addition and Subtraction Identities, Identities, Non-Right Trigonometry, Simplifying fractions, Trigonometry, Year 11 Mathematical Methods, Year 11 Specialist Mathematics

General Solutions to Trigonometric Equations

Solve sinx=\frac{1}{2} for 0\le x \le 2\pi

Sine is positive in the first and second quadrants.

    \begin{equation*}sinx=\frac{1}{2}\end{equation}

    \begin{equation*}x=\frac{\pi}{6} \text{ and } x=\pi-\frac{\pi}{6}=\frac{5\pi}{6}\end{equation}

But what if we aren’t given a domain for the x values?

Then we need to give general solutions.

For example,

Solve sinx=\frac{1}{2}

As you can see from the sketch above, there are infinite solutions.

The sine function has a period of 360^\circ, and so if \frac{\pi}{6} is a solution then \2pi+\frac{\pi}{6} is also a solution. This means \frac{\pi}{6}+2\pi n, n\in\mathbb{Z} is a general solution. And we can do the same for the second solution \frac{5\pi}{6}+2\pi n.

In general

    \begin{equation*}sinx=y\end{equation}


    \begin{equation*}x=arcsin(y)+2\pi n \text { and } x=\pi-arcsin(y)+2\pi n \end{equation}


    \begin{equation*}x=arcsin(y)+2\pi n \text { and } x=\pi(2n+1)-arcsin(y), n \in \mathbb{Z}\end{equation}


We can turn this into one equation

    \begin{equation*}x=(-1)^n arcsin(y)+n\pi, n \in \mathbb{Z}\end{equation}

What about cosine?

Solve cosx=\frac{1}{2}

Cosine is positive in the first and fourth quadrants (it also has a period of 2\pi. The first two (positive) solutions are \frac{\pi}{3} and 2\pi-\frac{\pi}{3}.

To generalise, x=2\pi n+\frac{\pi}{3} \text { and }x=2\pi n -\frac{\pi}{3}, which we can make into one equation x=2\pi n \pm \frac{pi}{3}

In general

    \begin{equation*}cosx=y\end{equation}

    \begin{equation*}x=2\pi n \pm arccos(y), n\in\mathbb{Z}\end{equation}

What about the tangent function? Remember tan has a period of \pi.

Solve tanx=\sqrt{3}

First, note that the solutions are all a common distance (\pi) apart.

Tan is positive in the first and the third quadrant

    \begin{equation*}tanx=\sqrt{3}\end{equation}

    \begin{equation*}x=\frac{\pi}{3} \text { and } x=\pi+\frac{\pi}{3}\end{equation}

Because all of the solutions are \pi radians apart, the general solution is x=\frac{\pi}{3} \pm \pi

In general

    \begin{equation*}tanx=y\end{equation}

    \begin{equation*}x=arctan(y) + n\pi, n\in \mathbb{Z}\end{equation}

Examples

Solve for all values of x, tan^2(x)+tan(x)-6=0

    \begin{equation*}tan^2(x)+tan(x)-6=0\end{equation}

This is a quadratic equation – we need two numbers that add to 1 and multiple to -6, +3 \text { and } -2

    \begin{equation*}(tan(x)+3)(tan(x)-2))=0\end{equation}

    \begin{equation*}tan(x)=-3 \text { or } tan(x)=2\end{equation}

    \begin{equation*}x=arctan(-3)+n\pi \text { or } x=arctan(2)+n\pi, n\in\mathbb{Z}\end{equation}


Solve 2cos(2x+\frac{\pi}{18})=\sqrt{3}

    \begin{equation*}2cos(2x+\frac{\pi}{18})=\sqrt{3}\end{equation}

    \begin{equation*}cos(2x+\frac{\pi}{18})=\frac{\sqrt{3}}{2}\end{equation}

    \begin{equation*}2x+\frac{\pi}{18}=2n\pi \pm \frac{\pi}{6}\end{equation}

    \begin{equation*}2x=2n\pi \pm \frac{\pi}{6}-\frac{\pi}{18}\end{equation}

    \begin{equation*}2x=2n\pi \pm \frac{\pi}{9}\end{equation}

    \begin{equation*}x=n\pi \pm \frac{\pi}{18}\end{equation}

Leave a Comment

Filed under Algebra, Quadratic, Solving Equations, Solving Trig Equations, Trigonometry, Year 11 Specialist Mathematics

Continuous Uniform Random Variable

My Year 12 Mathematics Methods students are doing continuous random variables at the moment and I thought it would be worthwhile deriving the mean and variance formulas for a uniform continuous random variable.

The probability density function for a uniform random variable is

    \begin{equation*}f(x)= \left \{ {\begin{matrix}\frac{1}{b-a} &  a\le x\le b \\0 & \text {elsewhere}\end{matrix}}\end{equation}

and it looks like

Remember, the mean \mu or expected value E(X) of a continuous random variable is

(1)   \begin{equation*}E(X)=\int xp(x) dx\end{equation*}

and the variance \sigma^2 is

(2)   \begin{equation*}\sigma^2=\int (x-\mu)^2p(x) dx\end{equation*}

We are going to use equations 1 and 2 to find formulae for a uniform continuous random variable.

    \begin{equation*}\mu=\int_a^b x (\frac{1}{b-a}) dx\end{equation}

    \begin{equation*}\mu=\frac{x^2}{2(b-a)}|\begin{matrix}b\\a\end{matrix}\end{equation}

    \begin{equation*}\mu=\frac{b^2}{2(b-a)}-\frac{a^2}{2(b-a)}=\frac{b^2-a^2}{2(b-a)}\end{equation}

Factorise the numerator (using difference of squares)

    \begin{equation*}\mu=\frac{(b-a)(b+a)}{2(b-a)}\end{equation}

Hence,

    \begin{equation*}\mu=\frac{b+a}{2}\end{equation}

Now for the variance

    \begin{equation*}\sigma^2=\int_a^b (x-(\frac{a+b}{2}))^2(\frac{1}{b-a}) dx\end{equation}

    \begin{equation*}\sigma^2=\frac{1}{b-a}(\frac{(x-\frac{a+b}{2})^3}{3})|\begin{matrix}b\\a\end{matrix}\end{equation}

    \begin{equation*}\sigma^2=\frac{1}{b-a}((\frac{(b-\frac{a+b}{2})^3}{3})-(\frac{(a-\frac{a+b}{2})^3}{3}))\end{equation}

    \begin{equation*}\sigma^2=\frac{1}{b-a}(\frac{-a^3}{12}+\frac{b^3}{12}+\frac{a^2b}{4}-\frac{ab^2}{4})\end{equation}

    \begin{equation*}\sigma^2=\frac{1}{b-a}(\frac{-a^3+b^3+3a^2b-3ab^2}{12})\end{equation}

    \begin{equation*}\sigma^2=\frac{1}{b-a}(\frac{b^3-3b^2a+3ba^2-a^3}{12})\end{equation}

From the binomial expansion theorem, we know

    \begin{equation*}b^3-3b^2a+3ba^2-a^3=(b-a)^3\end{equation}

Hence

    \begin{equation*}\sigma^2=\frac{1}{b-a}(\frac{(b-a)^3}{12}\end{equation}

and

    \begin{equation*}\sigma^2=\frac{(b-a)^2}{12}\end{equation}

Leave a Comment

Filed under Binomial Expansion Theorem, Continuous Random Variables, Probability Distributions, Uniform, Year 12 Mathematical Methods

Simultaneous Equation (or is it?)

Solve simultaneously

X+Y+Z=10
XYZ=30
XY+YZ+XZ=31

We could attempt to solve this simultaneously, but I think the algebra would be tricky.

The three equations are related to the roots of a cubic polynomial.

If the general equation of the polynomial is ax^3+bx^2+cx+d, then we know

The sum of the roots

\alpha+\beta+\gamma=\frac{-b}{a}

The product of the roots

\alpha\beta\gamma=\frac{-d}{a}

and

\alpha\beta+\alpha\gamma+\beta\gamma=\frac{c}{a}

So from our three equations we have

(1)   \begin{equation*}X+Y+Z=10=\frac{-b}{a}\end{equation*}

(2)   \begin{equation*}XYZ=30=\frac{-d}{a}\end{equation*}

(3)   \begin{equation*}XY+YZ+XZ=31=\frac{c}{a}\end{equation*}

Let a=1, then b=-10, c=31, and d=-30

Our cubic is t^3-10t^2+31t-30 and we can try to solve it.

The roots will be factors of -30, so \pm 1, \pm 2, \pm 3, \pm 5, \pm 6, \pm 10, \pm 15, \pm 30

Try t=2

    \begin{equation*}(2)^3-10(2)^2+31(2)-30=0\end{equation}

Hence t=2 is a root.

Use synthetic division to find the quadratic factor

21-1031-30
2-1630
1-8150

The quadratic factor is x^2-8x+15, which factorises to (x-3)(x-5)

Hence the solutions are X=2, Y=3, and Z=5

We could assume the solutions are natural numbers, then we can look at factors of 30.

Factors of ThirtyX+Y+ZXY+YZ+XZ
1, 1, 301+1+30=321+30+30=61
1, 2, 151+2+15=182+15+30=47
1, 5, 61+5+6=125+6+30=41
2, 3, 52+3+5=106+10+15=31

Hence the solutions are X=2, Y=3, and Z=5

But with this approach we might not be able to find the solutions.

Leave a Comment

Filed under Algebra, Cubics, Factorising, Polynomials, Quadratic, Simultaneous Equations, Solving, Sum and Product of Roots

Age Question (Year 8 equation solving)

Eight years ago my father was three times as old as I shall be in five years time. When I was born he was 41 years old. How old am I now?

I always find these age questions a bit weird – a bit of a riddle, and contrived (just so we can solve some equations)

Let x be my age now, and y be my fathers age now.

(1)   \begin{equation*}y=x+41\end{equation*}

Because my father was 41 when I was born.

(2)   \begin{equation*}y-8=3(x+5)\end{equation*}

y-8 for 8 years ago, and 3(x+5) for three times my age in 5 years.

Solve the equations simultaneously. Substitute y=x+41 into equation 2

    \begin{equation*}x+41-8=3(x+5)\end{equation}

    \begin{equation*}x-33=3x+15\end{equation}

    \begin{equation*}18=2x\end{equation}

    \begin{equation*}x=9\end{equation}

Hence my current age is 9.

Leave a Comment

Filed under Algebra, Simultaneous Equations, Solving Equations, Year 8 Mathematics