Category Archives: Algebra

Geometry Problem

The blue shaded area is the area of triangles APO and AQO subtract the sector POQ.

We can use Heron’s law to find the area of the triangle \Delta{ABC}

    \begin{equation*}A=\sqrt{s(s-a)(s-b)(s-c)}\end{equation}

where s=\frac{a+b+c}{2}

    \begin{equation*}A=\sqrt{20(20-16)(20-10)(20-14)}=40\sqrt{3}\end{equation}

We also know the area of triangle \Delta{ABC}=sr where r is the radius of the inscribed circle.

Hence, 40\sqrt{3}=20r and r=2\sqrt{3}

We know AP=AQ, CQ=CR, and BP=BR – tangents to a circle are congruent.

    \begin{equation*}14-x=6+x\end{equation}

(1)   \begin{equation*}8=2x\end{equation*}

(2)   \begin{equation*}x=4\end{equation*}

Area \Delta{AQO}=\frac{1}{2}10\times 2\sqrt{3}=10\sqrt{3}

Area \Delta{APO}=Area \Delta{AQO}

    \begin{equation*}tan(\theta)=\frac{10}{2\sqrt{3}}\end{equation}

    \begin{equation*}\theta=70.9^{\circ}\end{equation}

Area of sector OPQ=\frac{2\times70.9}{360}\pi (2\sqrt{3})^2=14.8

Blue area = 20\sqrt{3}-14.8=19.8cm^2

Leave a Comment

Filed under Algebra, Area, Finding an angle, Finding an area, Geometry, Heron's Law, Interesting Mathematics, Puzzles, Radius and Semi-Perimeter, Right Trigonometry, Solving Equations, Trigonometry

Trigonometric Equation

Solve cos(4\theta)+cos(2\theta)+cos(\theta)=0 for 0\le \theta \le\pi

Remember the identity

(1)   \begin{equation*}cos(A)+cos(B)=2cos(\frac{A+B}{2})cos(\frac{A-B}{2})\end{equation*}

Hence

    \begin{equation*}cos(4\theta)+cos(2\theta)=2cos(3\theta)cos(\theta)\end{equation}

Now I have

    \begin{equation*}2cos(3\theta)cos(\theta)+cos(\theta)=0\end{equation}

    \begin{equation*}cos(\theta)(2cos(3\theta)+1)=0\end{equation}

cos(\theta)=0 or cos(3\theta)=\frac{-1}{2}

\theta=\frac{\pi}{2}

cos(3\theta)=-\frac{1}{2} for 0 \le \theta \le 3\pi

3\theta=\frac{2\pi}{3}, \frac{4\pi}{3}, \frac{8\pi}{3}

\theta=\frac{2\pi}{9}, \frac{4\pi}{9}, \frac{8\pi}{9}

Hence \theta =\frac{\pi}{2},\frac{2\pi}{9}, \frac{4\pi}{9}, \frac{8\pi}{9}

Leave a Comment

Filed under Identities, Quadratic, Solving Equations, Solving Trig Equations, Trigonometry, Year 11 Specialist Mathematics

Polynomial Long Division

I usually choose to use synthetic division when factorising polynomials, but I know some teachers are unhappy when their students do this. So for completeness, here is my PDF for Polynomial Long Division.

Leave a Comment

Filed under Algebra, Cubics, Factorisation, Factorising, Factorising, Polynomials, Quadratics, Solving, Solving, Solving Equations, Year 11 Mathematical Methods

Completing the Square

x^2+6x-4 \rightarrow (x+3)^2-13

Completing the square is useful to

  • sketch parabolas.
  • solve quadratics.
  • factorising quadratics
  • finding the centre and radius version of the equation of a circle.

When completing the square we take advantage of perfect squares. For example, (x+3)^2=(x+3)(x+3)=x^2+6x+9

6=2\times 3 and 9=3\times 3

Example 1

Put x^2+8x-5 into completed square form.

What perfect square has an 8x term?

(x+4)^2=x^2+8x+16

We don’t want +16, we want -5, so subtract 16+5

x^2+8x-5=(x+4)^2-21


x^2+bx+c=(x+\frac{b}{2})^2-(\frac{b}{2})^2+c

What about a non-monic quadratic? For example,

2x^2+12x+11

Factorise the 2

2(x^2+6x+\frac{11}{2})

And continue as before

2[(x+3)^2-9+\frac{11}{2}]=2[(x+3)^2-\frac{18}{2}+\frac{11}{2}]=2[(x+3)^2-\frac{7}{2}]=2(x+3)^2-7

Example 2

y=2x^2+7x-5

2(x^2+\frac{7}{2}x-\frac{5}{2})

2[(x+\frac{7}{4})^2-(\frac{7}{4})^2-\frac{5}{2}]

2[(x+\frac{7}{4})^2-\frac{49}{16}-\frac{40}{16}]

2[(x+\frac{7}{4})^2-\frac{89}{16}]

2(x+\frac{7}{4})^2-\frac{89}{8}


ax^2+bx+c=a(x+\frac{b}{2a})^2-a((\frac{b}{2a})^2+\frac{c}{a})

Casio Classpad e-activity

Leave a Comment

Filed under Algebra, Arithmetic, Classpad Skills, Completing the Square, Fractions, Quadratic, Quadratics, Year 10 Mathematics, Year 9 Mathematics

Integration Question (much easier with Integration by Parts)

The Year 12 Mathematics Methods course doesn’t cover Integration by Parts, so they end up with questions like the following.

Determine the following:
(a) \frac{d}{dx} \left (e^{2x}sin(3x) \right )
(b) \frac{d}{dx} \left (e^{2x}cos(3x) \right )
Hence, determine the following integral by considering both parts (a) and (b)
\int_0^{\frac{\pi}{2}}13e^{2x}cos(3x) \enspace dx

(a) Use the product rule

(1)   \begin{equation*}\frac{d}{dx} \left (e^{2x}sin(3x) \right)= 2e^{2x}sin(3x)+3e^{2x}cos(3x) \end{equation*}

(b)

(2)   \begin{equation*}\frac{d}{dx} \left (e^{2x}cos(3x) \right )=2e^{2x}cos(3x)-3e^{2x}sin(3x)\end{equation*}

I need to use equations 1 and 2 to find \int_0^{\frac{\pi}{2}}13e^2xcos(3x) \enspace  dx.

The e^{2x}sin(3x) terms need to vanish and I need 13 of the e^{2x}cos(3x) terms.

3\times \text{equation} (1)+ 2\times \text{equation} (2)

(3)   \begin{equation*}3\frac{d}{dx} \left (e^{2x}sin(3x) \right)= 6e^{2x}sin(3x)+9e^{2x}cos(3x) \end{equation*}

(4)   \begin{equation*}2\frac{d}{dx} \left (e^{2x}cos(3x) \right )=4e^{2x}cos(3x)-6e^{2x}sin(3x)\end{equation*}

Equation 3 plus equation 4

(5)   \begin{equation*}3\frac{d}{dx} \left (e^{2x}sin(3x) \right)+2\frac{d}{dx} \left (e^{2x}cos(3x) \right )=13e^{2x}cos(3x)\end{equation*}

Integrate both sides of the equation

\int_0^{\frac{\pi}{2}} \left (3\frac{d}{dx} \left (e^{2x}sin(3x) \right)+2\frac{d}{dx} \left (e^{2x}cos(3x) \right )  \right ) dx=\int_0^{\frac{\pi}{2}}13e^{2x}cos(3x) \enspace dx

By the fundamental theorem of calculus, we know

(3e^{2x}sin(3x) \right)+2 \left (e^{2x}cos(3x) \right ]_0^{\frac{\pi}{2}}=\int_0^{\frac{\pi}{2}}13e^{2x}cos(3x) \enspace dx

3e^{\pi}sin(\frac{3\pi}{2}})+2e^{\pi}cos(\frac{3\pi}{2}})-3e^0sin(3(0))-2e^0cos(3(0))=\int_0^{\frac{\pi}{2}}13e^{2x}cos(3x) \enspace dx

\int_0^{\frac{\pi}{2}}13e^{2x}cos(3x) \enspace dx=-3e^{\pi}-2

Integration by Parts

Remember \int u\enspace dv=uv-\int v \enspace du

\int_0^{\frac{\pi}{2}}e^{2x}cos(3x) \enspace dx

Let u=cos(3x), then du=-3sin(3x)

and dv=e^{2x}, then v=\frac{e^{2x}}{2}

\int_0^{\frac{\pi}{2}}e^{2x}cos(3x) \enspace dx = \left (cos(3x)\left (\frac{e^{2x}}{2}\right ) \right )_0^{\frac{\pi}{2}}-\int_0^{\frac{\pi}{2}} \frac{e^{2x}}{2}(-3sin(3x)) \enspace dx

\int_0^{\frac{\pi}{2}}e^{2x}cos(3x) \enspace dx=cos(\frac{3\pi}{2})(\frac{e^\pi}{2})-cos(0)(\frac{e^0}{2})+\frac{3}{2}\int_0^{\frac{\pi}{2}}sin(3x)e^{2x} \enspace dx

\int_0^{\frac{\pi}{2}}e^{2x}cos(3x) \enspace dx=-\frac{1}{2}+\frac{3}{2}\int_0^{\frac{\pi}{2}}sin(3x)e^{2x} \enspace dx

Let u=sin(3x), then du=3cos(3x)

and dv=e^{2x}. then v=\frac{e^{2x}}{2}

\int_0^{\frac{\pi}{2}}e^{2x}cos(3x) \enspace dx=-\frac{1}{2}+\frac{3}{2}(\frac{e^{2x}}{2}sin(3x)]_0^{\frac{\pi}{2}}-\int_0^{\frac{\pi}{2}} \frac{e^{2x}}{2}(3cos(3x)) \enspace dx)

\int_0^{\frac{\pi}{2}}e^{2x}cos(3x) \enspace dx=-\frac{1}{2}+\frac{3}{2}(-\frac{e^\pi}{2}-\frac{3}{2} \int_0^{\frac{\pi}{2}} e^{2x}cos(3x) \enspace dx)

\int_0^{\frac{\pi}{2}}e^{2x}cos(3x) \enspace dx=-\frac{1}{2}-\frac{3e^\pi}{4}-\frac{9}{4} \int_0^{\frac{\pi}{2}} e^{2x}cos(3x) \enspace dx

Collect like terms (the integrals are like)

\frac{13}{4}(\int_0^{\frac{\pi}{2}}e^{2x}cos(3x) \enspace dx)=-\frac{1}{2}-\frac{3e^\pi}{4}

(\int_0^{\frac{\pi}{2}}e^{2x}cos(3x) \enspace dx)=\frac{-2-3e^\pi}{13}

Leave a Comment

Filed under Algebra, Calculus, Integration, Integration by Parts, Year 12 Mathematical Methods

Hard Equation Solving Question

Find the value(s) of k such that the equation below has two numerically equal but opposite sign solutions (e.g. 5 and -5).

    \begin{equation*}\frac{x^2-2x}{4x-1}=\frac{k-1}{k+1}\end{equation}

    \begin{equation*}(x^2-2x)(k+1)=(k-1)(4x-1)\end{equation}

    \begin{equation*}(k+1)x^2-2kx-2x=4kx-k-4x+1\end{equation}

    \begin{equation*}(k+1)x^2-2kx-4kx-2x+4x-1=0\end{equation}

    \begin{equation*}(k+1)^2x^2-(6k-2)x-1=0\end{equation}

For there to be two numerically equal but opposite sign solutions, the b term of the quadratic equation must be 0.

    \begin{equation*}6k-2=0\end{equation}

Hence k=\frac{1}{3}.

When k=\frac{1}{3} the equation becomes

    \begin{equation*}\frac{x^2-2x}{4x-1}=\frac{\frac{-2}{3}}{\frac{4}{3}}\end{equation}

    \begin{equation*}\frac{x^2-2x}{4x-1}=\frac{-1}{2}\end{equation}

    \begin{equation*}2x^2-4x=-4x+1\end{equation}

    \begin{equation*}2x^2-1=0\end{equation}

    \begin{equation*}x^2=\frac{1}{2}\end{equation}

    \begin{equation*}x=\pm \frac{1}{\sqrt{2}}\end{equation}

Leave a Comment

Filed under Algebra, Polynomials, Quadratic, Quadratics, Solving, Solving, Solving Equations

Trigonometric Exact Values

Find exactly sin(18^\circ)

We must be able to find an arithmetic combination of the exact values we knew to find 18.

    \begin{equation*}90=5\times 18\end{equation}

    \begin{equation*}90-3(18)=2(18)\end{equation}

I re-arranged as above, so I could take advantage of cos(90)=0 and sin(90)=1

Useful identities
sin(2x)=2sin(x)cos(x)
cos(2x)=cos^2(x)-sin^2(x)=1-2sin^2(x)=2cos^2(x)-1
sin(3x)=3sin(x)-4sin^3(x)
cos(3x)=4cos^3(x)-3cos(x)
sin(A-B)=sin(A)cos(B)-sin(B)cos(A)
cos^2(x)=1-sin^2(x)

    \begin{equation*}sin(90-3(18))=sin(2(18))\end{equation}

    \begin{equation*}sin(90)cos(3(18))-sin(3(18))cos(90)=2sin(18)cos(18)\end{equation}

    \begin{equation*}cos(3(18))=2sin(18)cos(18)\end{equation}

    \begin{equation*}4cos^3(18)-3cos(18)=2sin(18)cos(18)\end{equation}

    \begin{equation*}4cos^3(18)-3cos(18)-2sin(18)cos(18)=0\end{equation}

    \begin{equation*}cos(18)(4cos^2(18)-3-2sin(18))=0\end{equation}

Hence,

    \begin{equation*}4cos^2(18)-2sin(18)-3=0\end{equation}

    \begin{equation*}4-4sin^2(18)-2sin(18)-3=0\end{equation}

    \begin{equation*}-4sin^2(18)-2sin(18)+1=0\end{equation}

Use the quadratic equation formula

    \begin{equation*}sin(18)=\frac{-b\pm \sqrt{b^2-4ac}}{2a}\end{equation}

    \begin{equation*}sin(18)=\frac{2 \pm \sqrt{4-4(-4)(1)}}{-8}\end{equation}

    \begin{equation*}sin(18)=\frac{2 \pm \sqrt{20}}{-8}\end{equation}

    \begin{equation*}sin(18)=\frac{-2 \mp 2\sqrt{5}}{8}\end{equation}

    \begin{equation*}sin(18)=\frac{-1 \mp \sqrt{5}}{4}\end{equation}

As sin(18)>0, sin(18)=\frac{-1+\sqrt{5}}{4}

sin(18)=\frac{-1+\sqrt{5}}{4}

Leave a Comment

Filed under Addition and Subtraction Identities, Algebra, Identities, Quadratic, Quadratics, Solving, Solving Equations, Solving Trig Equations, Trigonometry, Year 11 Specialist Mathematics

Geometry Problem

Geometry Snacks by Ed Southall and Vincent Pantaloni

I started by trisecting another side of the triangle

This makes it clearer that the two lines are parallel

Which means the two angles labelled above are corresponding and therefore congruent.

Let the side length be x.

The area of the equilateral triangle is

(1)   \begin{equation*}A=\frac{1}{2}x^2 sin(60)=\frac{\sqrt{3}x^2}{4}\end{equation*}

    \begin{equation*}cos(60)=\frac{y}{\frac{2x}{3}}\end{equation}

    \begin{equation*}y=\frac{x}{3}\end{equation}

Area of right triangle

(2)   \begin{equation*}A=(\frac{1}{2})(\frac{2x}{3})(\frac{x}{3})sin(60)=\frac{\sqrt{3}x^2}{18}\end{equation*}

The fraction of the area is

    \begin{equation*}=\frac{\frac{\sqrt{3}x^2}{18}}{\frac{\sqrt{3}x^2}{4}}=\frac{2}{9}\end{equation}

Leave a Comment

Filed under Algebra, Area, Area of Triangles (Sine), Finding an area, Geometry, Puzzles, Right Trigonometry, Simplifying fractions, Trigonometry

Divisibility Rule for 11

I was working on a question and involved 11 and I wondered what the divisibility rule was?

So then I had a bit of a think about it.

Let N be a number divisible by 11. The N (mod11)=0

    \begin{equation*}N=a_n\times10^n+a_{n-1}\times10^{n-1}+a_{n-2}\times10^{n-2}+...+a_0\times10^0\end{equation}

    \begin{equation*}0=a_n\times10^n (mod11)+a_{n-1}\times10^{n-1}(mod11)+a_{n-2}\times10^{n-2}(mod11)+...+a_0\times10^0(mod11)\end{equation}

Now 10 (mod11)=10 which is congruent to -1 because 10-(-1)=11, which is a multiple of 11.

Thus

    \begin{equation*}0=a_n(-1)^n+a_{n-1}(-1)^{n-1}+a_{n-2}(-1)^{n-2}+...+a_0(-1)^0\end{equation}

Odd powers will be negative and even positive.

So if we start at one end of the number and add every second digit (i.e. first digit plus third digit plus fifth digit etc.) and then subtract the other digits (i.e. second digit, fourth digit, six digit, etc.), if that equals zero then the number is divisible by 11.

For example, is 1756238 divisible by 11?

1+5+2+8-7-6-3=16-16=0

Hence 1756238 is divisible by 11

Leave a Comment

Filed under Algebra, Arithmetic, Divisibility, Index Laws, Interesting Mathematics, Number Bases

Deriving the sum formula for an Arithmetic Progression

Arithmetic progressions (or arithmetic sequences) are sequences with a common difference (i.e. the same number is added or subtracted to get the next number in the sequence).

For example,

2, 5, 8, 11, 14, ...

or

12,10, 8, 6, 4, ...

The n^{th} term of an arithmetic progression is T_n=a+(n-1)d where a is the first term and d is the common difference.

i.e. For the sequence above, T_4=12+(4-1)(-2)=6

An arithmetic series is the sum of the arithmetic progression.

For example, if the sequence is

3, 7, 11, 15, ...

then S_1=3, S_2=3+7=10, S_3=3+7+11=21

The series is also a sequence and we are going to find the general term, S_n.

    \begin{equation*}S_n=T_1+T_2+T_3+...+T_n\end{equation}

which we can write as

    \begin{equation*}S_n=a+a+d+a+2d+...+a+(n-1)d\end{equation}

Now, I am going to write that in reverse order (to make the next bit more obvious)

    \begin{equation*}S_n=a+(n-1)d+a+(n-2)d+a+(n-3)d+ ... +a\end{equation}

I am going to add the two versions of S_n together

Each term has an a and there are n terms, so we now have 2na. The d terms, we going to group together

d+(n-1)d+2d+(n-2)d+3d+(n-3)d+ ... +(n-1)d+d

Which simplifies to nd+nd+nd+ ...+nd and we have (n-1) d terms. So this part of the sum is (n-10nd

Thus we have

    \begin{equation*}2S_n=2an+(n-1)nd\end{equation}

Which simplifies to

(1)   \begin{equation*}S_n=\frac{n}{2}(2a+(n-1)d)\end{equation*}

Let’s test it, remember the sequence 3, 7, 11, 15, .... We know S_3=21

    \begin{equation*}S_3=\frac{3}{2}(2(3)+(3-1)(4))=\frac{3}{2}(14)=21\end{equation}

Leave a Comment

Filed under Algebra, Arithmetic, Sequences, Year 11 Mathematical Methods