Category Archives: Algebra

Factorising Non-Monic Quadratics

The general equation of a quadratic is ax^2+bx+c

Let’s explore different methods of factorising a non-monic quadratic (the a term is not 1)

Factorise 6x^2+x-12

We need to find two numbers that add to 1 and multiply to -72 (i.e. add to b and multiply to a\times c)

The two numbers are 9 and -8

Method 1 – Splitting the middle term

This is the method I teach the most often

    \begin{equation*}6x^2+x-12\end{equation}

Split the middle term (the b term) into the two numbers

    \begin{equation*}6x^2-8x+9x-12\end{equation}

The order doesn’t matter.

Find a common factor for the first term terms, and then for the last two terms.

    \begin{equation*}2x(3x-4)+3(3x-4)\end{equation}

There is a common factor of (3x-4), factor it out.

    \begin{equation*}(3x-4)(2x+3)\end{equation}

Method two – Fraction

    \begin{equation*}6x^2+x-12\end{equation}

Put 6x into both factors and divide by 6

    \begin{equation*}\frac{(6x-8)(6x+9)}{6}\end{equation}

Factorise

    \begin{equation*}\frac{2(3x-4)3(2x+3)}{6}\end{equation}

    \begin{equation*}\frac{6(3x-4)(2x+3)}{6}\end{equation}

    \begin{equation*}(3x-4)(2x+3)\end{equation}

Method 3 – Monic to non-monic

    \begin{equation*}y=6x^2+x-12\end{equation}

Multiply both sides of the equation by a

    \begin{equation*}6y=6(6x^2+x-12)\end{equation}

    \begin{equation*}6y=6^2x^2+6x-72\end{equation}

    \begin{equation*}6y=(6x)^2+6x-72\end{equation}

Let A=6x

    \begin{equation*}6y=A^2+A-72\end{equation}

Factorise

    \begin{equation*}6y=(A+9)(A-8)\end{equation}

Replace the A with 6x

    \begin{equation*}6y=(6x+9)(6x-8)\end{equation}

    \begin{equation*}6y=3(2x+3)2(3x-4)\end{equation}

    \begin{equation*}6y=6(2x+3)(3x-4)\end{equation}

    \begin{equation*}y=(2x+3)(3x-4)\end{equation}

Method 4 – Cross Method

    \begin{equation*}6x^2+x-12\end{equation}

Place the two numbers in the cross

Place the two numbers that add to 1 and multiply to -72 in the other parts of the cross.

Divide these two numbers by 6 (i.e a)

Simplify

Hence,

    \begin{equation*}(x-\frac{4}{3})(x+\frac{3}{2})\end{equation}

Which is

    \begin{equation*}(3x-4)(2x+3)\end{equation}

Method 5 – By Inspection

This is my least favourite method – although students get better with practice

    \begin{equation*}6x^2+x-12\end{equation}

The factors of a are 1, 2, 3, and 6 and the factors of 12 are 1, 2, 3, 4, 6, 12

We know one number is positive and one number negative.

Which give us all of these possibilities

Possible factorisationsb term of expansion
(x-1)(6x+12)12x-6x=6xNo
(x-2)(6x+6)6x-12x=-6xNo
(x-3)(6x+4)4x-18x-14xNo
(2x-1)(3x+12)24x-3x=21xNo
(2x-2)(3x+6)12x-6x=6xNo
(2x-3)(3x+4)8x-9x=-1xAlmost, switch the signs
(2x+3)((3x-4)-8x+9x=1xYes

    \begin{equation*}(2x+3)(3x-4)\end{equation}

With a bit of practice you don’t need to check all of the possibilties, but I find students struggle with this method.

Method 6 – Grid

    \begin{equation*}6x^2+x-12\end{equation}

Create a grid like the one below

6x^2
-12

Find the two numbers that multiply to -72 and add to 1 and place them in the other grid spots (see below)

6x^2-8x
9x-12

Find the HCF (highest common factor) of each row and put in the first column.

Row 1 HCF=2x, Row 2 HCF=3

2x6x^2-8x
39x-12

For the columns, calculate what is required to multiple the HCF to get the table entry.

For example, what do you need to multiple 2x and 3 by to get 6x^2 and 9x? In this case it is 3x. It’s always going to be the same thing, so just use one value to calculate it,

3x-4
2x6x^2-8x
39x-12

The factors are column 1 and row 1
(2x+3)(3x-4)

The two methods I use the most are splitting the middle term, and the cross method, but I can see value in the grid method.

Leave a Comment

Filed under Algebra, Factorising, Factorising, Polynomials, Quadratic, Quadratics

Binomial Expansion – deriving the formula for Variance

We have seen how the formula for mean (expected value) was derived, and now we are going to look at variance.

In general variance of a probability distribution is

(1)   \begin{equation*} Var(X)=E(X^2)-(E(X))^2\end{equation*}

We are going to start by calculating E(X^2)

    \begin{equation*}E(X^2)=\sum_{x=0}^nx^2p(x)\end{equation}

    \begin{equation*}E(X^2)=\sum_{x=0}^nx^2\begin{pmatrix}n\\x\end{pmatrix}p^x(1-p)^{n-x}\end{equation}

    \begin{equation*}E(X^2)=\sum_{x=0}^n x^2\frac{n!}{(n-x)!x!}p^x(1-p)^{n-x}\end{equation}

The x^2 cancels with the x! to leave x on the numerator and (x-1)! on the denominator.

Also, when x=0, x^2=0 and we can start the sum at x=1

    \begin{equation*}E(X^2)=\sum_{x=1}^n x\frac{n!}{(n-x)!(x-1)}!p^x(1-p)^{n-x}\end{equation}

Let y=x-1 and m=n-1, when x=n, y=n-1 and hence y=m and when x=1, y=0

Our equation is now

    \begin{equation*}E(X^2)=\sum_{y=0}^m (y+1)\frac{(m+1)!}{(m+1-(y+1))!y!}p^{y+1}(1-p)^{m+1-(y+1)}\end{equation}

Simplify

    \begin{equation*}E(X^2)=\sum_{y=0}^m(y+1)\frac{(m+1)!}{(m-y)!y!}p^{y+1}(1-p)^{m-y}\end{equation}

    \begin{equation*}E(X^2)=\sum_{y=0}^m(y+1)(m+1)\frac{m!}{(m-y)!y!}p\times p^y(1-p)^{m-y}\end{equation}

    \begin{equation*}E(X^2)=\sum_{y=0}^m p(y+1)(m+1)\frac{m!}{(m-y)!y!} p^y(1-p)^{m-y}\end{equation}

    \begin{equation*}E(X^2)=\sum_{y=0}^m p(y+1)(m+1)p(y)\end{equation}

    \begin{equation*}E(X^2)=p(m+1)(\sum_{y=0}^myp(y)+\sum_{y=0}^mp(y))\end{equation}

\sum_{y=0}^mp(y)=1 and \sum_{y=0}^myp(y)=E(Y)

    \begin{equation*}E(X^2)=p(m+1)(E(Y)+1)\end{equation}

E(Y)=mp

    \begin{equation*}E(X^2)=p(m+1)(mp+1)\end{equation}

m+1=n

    \begin{equation*}E(X^2)=pn((n-1)p+1)\end{equation}

    \begin{equation*}E(X^2)=n^2p^2-np^2+np\end{equation}

Now from equation 1

    \begin{equation*}Var(X)=E(X^2))-(E(X))^2\end{equation}

    \begin{equation*}=Var(X)=n^2p^2-np^2+np-n^2p^2\end{equation}

    \begin{equation*}Var(X)=-np^2+np\end{equation}

(2)   \begin{equation*}Var(X)=np(1-p)\end{equation*}

and the standard deviation is

(3)   \begin{equation*}\sigma_X=\sqrt{np(1-p)}\end{equation*}

1 Comment

Filed under Algebra, Binomial, Probability Distributions, Standard Deviation

Deriving the Quadratic Equation formula

My year 10 students have been learning how to complete the square with the idea of then deriving the quadratic equation formula.

The general equation for a quadratic is y=ax^2+bx+c

Completing the square,

    \begin{equation*}ax^2+bx+c\end{equation}

Factorise out the leading coefficient (i.e. a)

    \begin{equation*}a(x^2+\frac{bx}{a}+\frac{c}{a})\end{equation}

Half the second term (i.e \frac{b}{a}) and subtract the square of the second term.

    \begin{equation*}a((x+\frac{b}{2a})^2-(\frac{b}{2a})^2+\frac{c}{a})\end{equation}

    \begin{equation*}a((x+\frac{b}{2a})^2-\frac{b^2}{4a^2}+\frac{c}{a})\end{equation}

Simplify

    \begin{equation*}a((x+\frac{b}{2a})^2-\frac{b^2}{4a^2}+\frac{4ac}{4a^2})\end{equation}

    \begin{equation*}a((x+\frac{b}{2a})^2+\frac{-b^2+4ac}{4a^2})\end{equation}

    \begin{equation*}a(x+\frac{b}{2a})^2+\frac{-b^2+4ac}{4a}\end{equation}

Now let’s solve

    \begin{equation*}a(x+\frac{b}{2a})^2+\frac{-b^2+4ac}{4a}=0\end{equation}

    \begin{equation*}a(x+\frac{b}{2a})^2=\frac{b^2-4ac}{4a}\end{equation}

    \begin{equation*}(x+\frac{b}{2a})^2=\frac{b^2-4ac}{4a^2}\end{equation}

    \begin{equation*}(x+\frac{b}{2a})=\pm \sqrt{\frac{b^2-4ac}{4a^2}}\end{equation}

    \begin{equation*}(x+\frac{b}{2a})=\frac{\pm \sqrt{b^2-4ac}}{2a}\end{equation}

    \begin{equation*}x=-\frac{b}{2a}\frac{\pm \sqrt{b^2-4ac}}{2a}\end{equation}

Which is the quadratic equation formula.

Leave a Comment

Filed under Algebra, Quadratic, Quadratics, Solving, Solving, Solving Equations

Binomial Expansion Theorem

My Year 11 Mathematics Methods students are working on the Binomial Expansion Theorem.

But before we get onto that, remember Pascal’s triangle

First 8 rows of Pascal’s triangle

Now we can use combinations to find the numbers in each row. For example, 1 4 6 4 1 is \begin{pmatrix}4\\0\end{pmatrix}=1, \begin{pmatrix}4\\1\end{pmatrix}=4, \begin{pmatrix}4\\2\end{pmatrix}=6,  \begin{pmatrix}4\\3\end{pmatrix}=4, \begin{pmatrix}4\\4\end{pmatrix}=1

ExpressionExpansionCo-efficients
(x+y)^2x^2+2xy+y^21, 2, 1
(x+y)^3x^3+3x^2y+3xy^2+y^31, 3, 3, 1
(x+y)^4x^4+4x^3y+6x^2y^2+4xy^3+y^41, 4, 6, 4, 1

As you can see, the coefficients are the row of pascal’s triangle corresponding to the power. So (x+y)^6 would have co-efficients from the sixth row of the table 1, 6, 15, 20, 15, 6, 1.

To generalise

(x+y)^n=\begin{pmatrix}n\\0\end{pmatrix}x^ny^0+\begin{pmatrix}n\\1\end{pmatrix}x^{n-1}y^1+\begin{pmatrix}n\\2\end{pmatrix}x^{n-2}y^2+ ...+\begin{pmatrix}n\\n-1\end{pmatrix}x^1{y^{n-1}+\begin{pmatrix}n\\n\end{pmatrix}x^0y^n

Which we can condense to

(x+y)^n=\Sigma_{i=0}^n \begin{pmatrix}n\\i\end{pmatrix}x^{n-i}y^i

Worked Examples

(1) Expand (2x-3)^4

(2x-3)^4=\begin{pmatrix}4\\0\end{pmatrix}(2x)^4(-3)^0+\begin{pmatrix}4\\1\end{pmatrix}(2x)^3(-3)^1+\begin{pmatrix}4\\2\end{pmatrix}(2x)^2(-3)^2+\begin{pmatrix}4\\3\end{pmatrix}(2x)^1(-3)^3+\begin{pmatrix}4\\4\end{pmatrix}(2x)^0(-3)^4
(2x-3)^4=16x^4-96x^3+216x^2-216x+81

(2) Find the co-efficient of the x^3 term in the expansion of (2-5x)^5.

Remember (x+y)^n=\Sigma_{i=0}^n \begin{pmatrix}n\\i\end{pmatrix}x^{n-i}y^i, the x^3 is when i=3
\begin{pmatrix}5\\3\end{pmatrix}(2)^2(-5)^3=10\times 2\times -125=-5000

(3) Find the constant term in the expansion of (x^2+\frac{3}{x^4})^6

We need to find the term where the x‘s cancel out. Each term is \begin{pmatrix}6\\i\end{pmatrix}(x^2)^{6-i}(\frac{3}{x^4})^i.
\begin{pmatrix}6\\i\end{pmatrix}(x^{12-2i})(3^ix^{-4i}).
We need 12-2i-4i=0, hence i=2
Therefore, the co-efficient is \begin{pmatrix}6\\2\end{pmatrix}\times3^2=135

Leave a Comment

Filed under Algebra, Binomial Expansion Theorem, Counting Techniques, Year 11 Mathematical Methods

Puzzle Page 2

If x^2-3x+1=0, then find x^5+\frac{1}{x^5}.

My first thought was to solve for x, but it doesn’t factorise easily, and I didn’t want to find the fifth power of an expression involving surds (x=\frac{3\pm \sqrt{5}}{2}), there must be an easier way.

Because x\neq0, we can divide by x

    \begin{equation*}x-3+\frac{1}{x}=0\end{equation}

Hence

(1)   \begin{equation*}x+\frac{1}{x}=3\end{equation*}

What is the expansion of (x+\frac{1}{x})^5?

Using the binomial expansion theorem

    \begin{equation*}(x+\frac{1}{x})^5=x^5+5x^4(\frac{1}{x})+10x^3(\frac{1}{x^2})+10x^2(\frac{1}{x^3})+5x(\frac{1}{x^4})+\frac{1}{x^5}\end{equation}

    \begin{equation*}(x+\frac{1}{x})^5=x^5+\frac{1}{x^5}+5(x^3+\frac{1}{x^3})+10(x+\frac{1}{x})\end{equation}

Therefore

(2)   \begin{equation*}x^5+\frac{1}{x^5}=(x+\frac{1}{x})^5-5(x^3+\frac{1}{x^3})-10(x+\frac{1}{x})\end{equation*}

Let’s do it again for x^3+\frac{1}{x^3}

    \begin{equation*}(x+\frac{1}{x})^3=x^3+3x^2(\frac{1}{x})+3x(\frac{1}{x^2})+\frac{1}{x^3}\end{equation}

(3)   \begin{equation*}x^3+\frac{1}{x^3}=(x+\frac{1}{x})^3-3(x+\frac{1}{x})\end{equation*}

Substitute 3 into 2

    \begin{equation*}x^5+\frac{1}{x^5}=(x+\frac{1}{x})^5-5((x+\frac{1}{x})^3-3(x+\frac{1}{x}))-10(x+\frac{1}{x})\end{equation}

Remember x+\frac{1}{x}=3

Therefore

    \begin{equation*}x^5+\frac{1}{x^5}=3^5-5(3^3)+15\times3-10\times3\end{equation}

    \begin{equation*}x^5+\frac{1}{x^5}=243-135+45-30=123\end{equation}

This would be a good extension question for students learning the binomial expansion theorem. We also use this technique for trigonometric identities using complex numbers.

Leave a Comment

Filed under Algebra, Binomial Expansion Theorem, Puzzles

Puzzle Page 1

If \frac{a+b+2c}{a+b-c}=\frac{31}{15}, what does \frac{a+b}{c} equal?

    \begin{equation*}15(a+n+2c)=31(a+b-c)\end{equation}

    \begin{equation*}15a+15b+30c=31a+31b-31c)\end{equation}

    \begin{equation*}61c=16a+16b)\end{equation}

    \begin{equation*}\frac{61}{16}=\frac{a+b}{c}\end{equation}

Two positive numbers are such that their difference, their sum, and their product are in the ratio 2:5:21. What is the smaller of the two numbers?

Let x and y be the two numbers. Then

(1)   \begin{equation*}x-y=2k\end{equation*}

(2)   \begin{equation*}x+y=5k\end{equation*}

(3)   \begin{equation*}xy=21k\end{equation*}

Add equation 1 and 2 together to eliminate the y

    \begin{equation*}2x=7k\end{equation}

(4)   \begin{equation*}x=\frac{7k}{2}\end{equation*}

From 2 =5k-x, substitute for y into equation 3.

(5)   \begin{equation*}x(5k-x)=21k\end{equation*}

Substitute x=\frac{7k}{2} into equation 5.

    \begin{equation*}\frac{7k}{2}(5k-\frac{7k}{2})=21k\end{equation}

    \begin{equation*}\frac{35k^2}{2}-\frac{49k^2}{4}=21k\end{equation}

    \begin{equation*}\frac{70k^2}{4}-\frac{49k^2}{4}=\frac{84k}{4}\end{equation}

    \begin{equation*}21k^2-84k=0\end{equation}

    \begin{equation*}21k(k-4)=0\end{equation}

Hence, k=0 or k=4.

When k=4, x=\frac{7\times 4}{2}=14 and y=5\times 4-14=6

Therefore the smaller number is 6.

Leave a Comment

Filed under Algebra, Puzzles, Ratio, Solving Equations

Interesting Equation

I think this one is doing the rounds, I first saw it here.

    \begin{equation*}2^x3^{x^2}=6\end{equation}

x=1 is the obvious answer, 2^1\times 3^1=6, but are there more answers?

This was my approach

    \begin{equation*}ln(2^x3^{x^2})=ln(6)\end{equation}

    \begin{equation*}ln(2^x)+ln(3^{x^2})=ln(6)\end{equation}

    \begin{equation*}xln(2)+x^2ln(3)-ln(6)=0\end{equation}

    \begin{equation*}ln(3)x^2+ln(2)x-ln(6)=0\end{equation}

A quadratic equation.

Hence,

    \begin{equation*}x=\frac{-ln(2)\pm\sqrt{(ln(2))^2-4(ln(3))(ln(6))}}{2ln(3)}\end{equation}

I then used my calculator

Hence x=1 0r x=-1.631

Leave a Comment

Filed under Algebra, Index Laws, Interesting Mathematics, Quadratics, Solving

Arithmetic Sequence

I did this question with on of my year 11 students. I think the algebra and the subscripts can be a bit tricky.

If T_m=n and T_n=m, then prove that T_{m+n}=0. Here where T_n and T_m are terms of an arithmetic sequence.
Mathematics Methods Units 1&2 – Exercise 15B Question 19

If T_m=n then,

(1)   \begin{equation*}n=a+(m-1)d\end{equation*}


And if T_n=m then,

(2)   \begin{equation*}m=a+(n-1)d\end{equation*}


Subtract equation (2) from equation (1)

    \begin{equation*}n-m=(m-1)d-((n-1)d)\end{equation*}


    \begin{equation*}n-m=md-nd\end{equation*}


(3)   \begin{equation*}n-m=d(m-n)\end{equation*}


Therefore d must equal -1
Substitute d=-1 into equation (1)

    \begin{equation*}n=a+(m-1)(-1)\end{equation*}


(4)   \begin{equation*}n=a-m+1\end{equation*}


Therefore a=n+m-1


(5)   \begin{equation*}T_{m+n}=a+(m+n-1)d\end{equation*}


Substitute a=n+m-1 and d=-1 into equation (5)

    \begin{equation*}$T_{m+n}=n+m-1+(m+n-1)(-1)$\end{equation*}


    \begin{equation*}$T_{m+n}=n+m-1-m-n+1$\end{equation*}


(6)   \begin{equation*}$T_{m+n}=0$\end{equation*}

As you can see from equation (6), T_{m+n}=0

Leave a Comment

Filed under Algebra, Arithmetic, Sequences, Year 11 Mathematical Methods

Cats and Dogs

In my town 10% of the dogs think they are cats and 10% of the cats think they are dogs. All the other cats and dogs are perfectly normal. When all the cats and dogs in my town were rounded up and subjected to a rigorous test, 20% of them thought they were cats. What percentage of them really were cats?
Hamilton Olympiad 2003 B4 – The Ultimate Mathematical Challenge

Let x be the number of cats and y be the number of dogs.
Then 0.9x+0.1y think they are cats.
But we also know 20% of the total think they are cats.
0.2(x+y)
Therefore, 0.9x+0.1y=0.2(x+y)
0.9x+0.1y=0.2x+0.2y
0.7x=0.1y
7x=y
Percentage of cats is \frac{x}{x+y}\times100
Substitute 7x for y
\frac{x}{x+7x}\times100=\frac{x}{8x}\times100=\frac{1}{8}\times100=12.5%
\therefore 12.5% of the animals are cats

Leave a Comment

Filed under Algebra, Arithmetic, Percentages, Simplifying fractions, UK Mathematics Challenge