Category Archives: Algebra

Geometry Puzzle (finding a fraction of an area)

Geometry Puzzles in Felt Tip: A Compilation of puzzles from 2018 – Catriona Shearer

Band 1 and 3 have the same area.

We want to find the area of the shaded segment.

As the dots are equally spaced, the sector’s angle is \frac{\pi}{2} = (\frac{2\pi}{12}\times 3)

Remember the area of a segment is A=\frac{1}{2}r^2(\theta-sin(\theta)) where the angle measurement is in radians.

(1)   \begin{equation*}A=\frac{1}{2}r^2(\frac{\pi}{2}-sin(\frac{\pi}{2}))=\frac{1}{2}r^2(\frac{\pi}{2}-1))=\frac{\pi r^2}{4}-\frac{r^2}{2}\end{equation*}

We want to find the area of the shaded segment.

As the dots are equally spaced, the sector’s angle is \frac{2\pi}{12} = (\frac{\pi}{6})

(2)   \begin{equation*}A=\frac{1}{2}r^2(\frac{\pi}{6}-sin(\frac{\pi}{6}))=\frac{\pi r^2}{12}-\frac{r^2}{4}\end{equation*}

The area of band 1 is equation 1 -equation 2.

(3)   \begin{equation*}\frac{\pi r^2}{4}-\frac{r^2}{2}-(\frac{\pi r^2}{12}-\frac{r^2}{4})=\frac{\pi r^2}{6}-\frac{r^2}{4}\end{equation*}

Band 2 consists of two congruent triangles and two congruent sectors.

    \begin{equation*}\theta=\frac{2\pi}{12}\times 5=\frac{5\pi}{6}, \alpha=\frac{\pi}{6}\end{equation}

(4)   \begin{equation*}A=2(\frac{1}{2}r^2sin(\frac{5\pi}{6}))+2(\frac{1}{2}r^2\frac{\pi}{6})=\frac{r^2}{2}+\frac{r^2 \pi}{6}\end{equation*}

Hence the shaded area is 2(\frac{\pi r^2}{6}-\frac{r^2}{4})+\frac{r^2}{2}+\frac{r^2 \pi}{6}=\frac{\pi r^2}{2}

The area of the circle is \pi r^2

Hence the fraction of the shaded area is =\frac{\frac{\pi r^2}{2}}{\pi r^2}=\frac{1}{2}

Leave a Comment

Filed under Area, Area of Triangles (Sine), Finding an area, Geometry, Puzzles, Simplifying fractions

Algebra Time Question

This question is from Challenging Problems in Algebra

It’s the type of question students hate – “Who talks like that?”

Let t be the number of hours from noon.

    \begin{equation*}\frac{t}{8}+6-\frac{t}{4}=t\end{equation}

    \begin{equation*}6=\frac{9t}{8}\end{equation}

    \begin{equation*}t=\frac{48}{9}=5\frac{1}{3}\end{equation}

Hence the time is 5:20pm

Leave a Comment

Filed under Algebra, Puzzles, Simplifying fractions, Solving Equations

Geometry Problem

The blue shaded area is the area of triangles APO and AQO subtract the sector POQ.

We can use Heron’s law to find the area of the triangle \Delta{ABC}

    \begin{equation*}A=\sqrt{s(s-a)(s-b)(s-c)}\end{equation}

where s=\frac{a+b+c}{2}

    \begin{equation*}A=\sqrt{20(20-16)(20-10)(20-14)}=40\sqrt{3}\end{equation}

We also know the area of triangle \Delta{ABC}=sr where r is the radius of the inscribed circle.

Hence, 40\sqrt{3}=20r and r=2\sqrt{3}

We know AP=AQ, CQ=CR, and BP=BR – tangents to a circle are congruent.

    \begin{equation*}14-x=6+x\end{equation}

(1)   \begin{equation*}8=2x\end{equation*}

(2)   \begin{equation*}x=4\end{equation*}

Area \Delta{AQO}=\frac{1}{2}10\times 2\sqrt{3}=10\sqrt{3}

Area \Delta{APO}=Area \Delta{AQO}

    \begin{equation*}tan(\theta)=\frac{10}{2\sqrt{3}}\end{equation}

    \begin{equation*}\theta=70.9^{\circ}\end{equation}

Area of sector OPQ=\frac{2\times70.9}{360}\pi (2\sqrt{3})^2=14.8

Blue area = 20\sqrt{3}-14.8=19.8cm^2

Leave a Comment

Filed under Algebra, Area, Finding an angle, Finding an area, Geometry, Heron's Law, Interesting Mathematics, Puzzles, Radius and Semi-Perimeter, Right Trigonometry, Solving Equations, Trigonometry

Trigonometric Equation

Solve cos(4\theta)+cos(2\theta)+cos(\theta)=0 for 0\le \theta \le\pi

Remember the identity

(1)   \begin{equation*}cos(A)+cos(B)=2cos(\frac{A+B}{2})cos(\frac{A-B}{2})\end{equation*}

Hence

    \begin{equation*}cos(4\theta)+cos(2\theta)=2cos(3\theta)cos(\theta)\end{equation}

Now I have

    \begin{equation*}2cos(3\theta)cos(\theta)+cos(\theta)=0\end{equation}

    \begin{equation*}cos(\theta)(2cos(3\theta)+1)=0\end{equation}

cos(\theta)=0 or cos(3\theta)=\frac{-1}{2}

\theta=\frac{\pi}{2}

cos(3\theta)=-\frac{1}{2} for 0 \le \theta \le 3\pi

3\theta=\frac{2\pi}{3}, \frac{4\pi}{3}, \frac{8\pi}{3}

\theta=\frac{2\pi}{9}, \frac{4\pi}{9}, \frac{8\pi}{9}

Hence \theta =\frac{\pi}{2},\frac{2\pi}{9}, \frac{4\pi}{9}, \frac{8\pi}{9}

Leave a Comment

Filed under Identities, Quadratic, Solving Equations, Solving Trig Equations, Trigonometry, Year 11 Specialist Mathematics

Polynomial Long Division

I usually choose to use synthetic division when factorising polynomials, but I know some teachers are unhappy when their students do this. So for completeness, here is my PDF for Polynomial Long Division.

Leave a Comment

Filed under Algebra, Cubics, Factorisation, Factorising, Factorising, Polynomials, Quadratics, Solving, Solving, Solving Equations, Year 11 Mathematical Methods

Completing the Square

x^2+6x-4 \rightarrow (x+3)^2-13

Completing the square is useful to

  • sketch parabolas.
  • solve quadratics.
  • factorising quadratics
  • finding the centre and radius version of the equation of a circle.

When completing the square we take advantage of perfect squares. For example, (x+3)^2=(x+3)(x+3)=x^2+6x+9

6=2\times 3 and 9=3\times 3

Example 1

Put x^2+8x-5 into completed square form.

What perfect square has an 8x term?

(x+4)^2=x^2+8x+16

We don’t want +16, we want -5, so subtract 16+5

x^2+8x-5=(x+4)^2-21


x^2+bx+c=(x+\frac{b}{2})^2-(\frac{b}{2})^2+c

What about a non-monic quadratic? For example,

2x^2+12x+11

Factorise the 2

2(x^2+6x+\frac{11}{2})

And continue as before

2[(x+3)^2-9+\frac{11}{2}]=2[(x+3)^2-\frac{18}{2}+\frac{11}{2}]=2[(x+3)^2-\frac{7}{2}]=2(x+3)^2-7

Example 2

y=2x^2+7x-5

2(x^2+\frac{7}{2}x-\frac{5}{2})

2[(x+\frac{7}{4})^2-(\frac{7}{4})^2-\frac{5}{2}]

2[(x+\frac{7}{4})^2-\frac{49}{16}-\frac{40}{16}]

2[(x+\frac{7}{4})^2-\frac{89}{16}]

2(x+\frac{7}{4})^2-\frac{89}{8}


ax^2+bx+c=a(x+\frac{b}{2a})^2-a((\frac{b}{2a})^2+\frac{c}{a})

Casio Classpad e-activity

Leave a Comment

Filed under Algebra, Arithmetic, Classpad Skills, Completing the Square, Fractions, Quadratic, Quadratics, Year 10 Mathematics, Year 9 Mathematics

Integration Question (much easier with Integration by Parts)

The Year 12 Mathematics Methods course doesn’t cover Integration by Parts, so they end up with questions like the following.

Determine the following:
(a) \frac{d}{dx} \left (e^{2x}sin(3x) \right )
(b) \frac{d}{dx} \left (e^{2x}cos(3x) \right )
Hence, determine the following integral by considering both parts (a) and (b)
\int_0^{\frac{\pi}{2}}13e^{2x}cos(3x) \enspace dx

(a) Use the product rule

(1)   \begin{equation*}\frac{d}{dx} \left (e^{2x}sin(3x) \right)= 2e^{2x}sin(3x)+3e^{2x}cos(3x) \end{equation*}

(b)

(2)   \begin{equation*}\frac{d}{dx} \left (e^{2x}cos(3x) \right )=2e^{2x}cos(3x)-3e^{2x}sin(3x)\end{equation*}

I need to use equations 1 and 2 to find \int_0^{\frac{\pi}{2}}13e^2xcos(3x) \enspace  dx.

The e^{2x}sin(3x) terms need to vanish and I need 13 of the e^{2x}cos(3x) terms.

3\times \text{equation} (1)+ 2\times \text{equation} (2)

(3)   \begin{equation*}3\frac{d}{dx} \left (e^{2x}sin(3x) \right)= 6e^{2x}sin(3x)+9e^{2x}cos(3x) \end{equation*}

(4)   \begin{equation*}2\frac{d}{dx} \left (e^{2x}cos(3x) \right )=4e^{2x}cos(3x)-6e^{2x}sin(3x)\end{equation*}

Equation 3 plus equation 4

(5)   \begin{equation*}3\frac{d}{dx} \left (e^{2x}sin(3x) \right)+2\frac{d}{dx} \left (e^{2x}cos(3x) \right )=13e^{2x}cos(3x)\end{equation*}

Integrate both sides of the equation

\int_0^{\frac{\pi}{2}} \left (3\frac{d}{dx} \left (e^{2x}sin(3x) \right)+2\frac{d}{dx} \left (e^{2x}cos(3x) \right )  \right ) dx=\int_0^{\frac{\pi}{2}}13e^{2x}cos(3x) \enspace dx

By the fundamental theorem of calculus, we know

(3e^{2x}sin(3x) \right)+2 \left (e^{2x}cos(3x) \right ]_0^{\frac{\pi}{2}}=\int_0^{\frac{\pi}{2}}13e^{2x}cos(3x) \enspace dx

3e^{\pi}sin(\frac{3\pi}{2}})+2e^{\pi}cos(\frac{3\pi}{2}})-3e^0sin(3(0))-2e^0cos(3(0))=\int_0^{\frac{\pi}{2}}13e^{2x}cos(3x) \enspace dx

\int_0^{\frac{\pi}{2}}13e^{2x}cos(3x) \enspace dx=-3e^{\pi}-2

Integration by Parts

Remember \int u\enspace dv=uv-\int v \enspace du

\int_0^{\frac{\pi}{2}}e^{2x}cos(3x) \enspace dx

Let u=cos(3x), then du=-3sin(3x)

and dv=e^{2x}, then v=\frac{e^{2x}}{2}

\int_0^{\frac{\pi}{2}}e^{2x}cos(3x) \enspace dx = \left (cos(3x)\left (\frac{e^{2x}}{2}\right ) \right )_0^{\frac{\pi}{2}}-\int_0^{\frac{\pi}{2}} \frac{e^{2x}}{2}(-3sin(3x)) \enspace dx

\int_0^{\frac{\pi}{2}}e^{2x}cos(3x) \enspace dx=cos(\frac{3\pi}{2})(\frac{e^\pi}{2})-cos(0)(\frac{e^0}{2})+\frac{3}{2}\int_0^{\frac{\pi}{2}}sin(3x)e^{2x} \enspace dx

\int_0^{\frac{\pi}{2}}e^{2x}cos(3x) \enspace dx=-\frac{1}{2}+\frac{3}{2}\int_0^{\frac{\pi}{2}}sin(3x)e^{2x} \enspace dx

Let u=sin(3x), then du=3cos(3x)

and dv=e^{2x}. then v=\frac{e^{2x}}{2}

\int_0^{\frac{\pi}{2}}e^{2x}cos(3x) \enspace dx=-\frac{1}{2}+\frac{3}{2}(\frac{e^{2x}}{2}sin(3x)]_0^{\frac{\pi}{2}}-\int_0^{\frac{\pi}{2}} \frac{e^{2x}}{2}(3cos(3x)) \enspace dx)

\int_0^{\frac{\pi}{2}}e^{2x}cos(3x) \enspace dx=-\frac{1}{2}+\frac{3}{2}(-\frac{e^\pi}{2}-\frac{3}{2} \int_0^{\frac{\pi}{2}} e^{2x}cos(3x) \enspace dx)

\int_0^{\frac{\pi}{2}}e^{2x}cos(3x) \enspace dx=-\frac{1}{2}-\frac{3e^\pi}{4}-\frac{9}{4} \int_0^{\frac{\pi}{2}} e^{2x}cos(3x) \enspace dx

Collect like terms (the integrals are like)

\frac{13}{4}(\int_0^{\frac{\pi}{2}}e^{2x}cos(3x) \enspace dx)=-\frac{1}{2}-\frac{3e^\pi}{4}

(\int_0^{\frac{\pi}{2}}e^{2x}cos(3x) \enspace dx)=\frac{-2-3e^\pi}{13}

Leave a Comment

Filed under Algebra, Calculus, Integration, Integration by Parts, Year 12 Mathematical Methods

Hard Equation Solving Question

Find the value(s) of k such that the equation below has two numerically equal but opposite sign solutions (e.g. 5 and -5).

    \begin{equation*}\frac{x^2-2x}{4x-1}=\frac{k-1}{k+1}\end{equation}

    \begin{equation*}(x^2-2x)(k+1)=(k-1)(4x-1)\end{equation}

    \begin{equation*}(k+1)x^2-2kx-2x=4kx-k-4x+1\end{equation}

    \begin{equation*}(k+1)x^2-2kx-4kx-2x+4x-1=0\end{equation}

    \begin{equation*}(k+1)^2x^2-(6k-2)x-1=0\end{equation}

For there to be two numerically equal but opposite sign solutions, the b term of the quadratic equation must be 0.

    \begin{equation*}6k-2=0\end{equation}

Hence k=\frac{1}{3}.

When k=\frac{1}{3} the equation becomes

    \begin{equation*}\frac{x^2-2x}{4x-1}=\frac{\frac{-2}{3}}{\frac{4}{3}}\end{equation}

    \begin{equation*}\frac{x^2-2x}{4x-1}=\frac{-1}{2}\end{equation}

    \begin{equation*}2x^2-4x=-4x+1\end{equation}

    \begin{equation*}2x^2-1=0\end{equation}

    \begin{equation*}x^2=\frac{1}{2}\end{equation}

    \begin{equation*}x=\pm \frac{1}{\sqrt{2}}\end{equation}

Leave a Comment

Filed under Algebra, Polynomials, Quadratic, Quadratics, Solving, Solving, Solving Equations

Trigonometric Exact Values

Find exactly sin(18^\circ)

We must be able to find an arithmetic combination of the exact values we knew to find 18.

    \begin{equation*}90=5\times 18\end{equation}

    \begin{equation*}90-3(18)=2(18)\end{equation}

I re-arranged as above, so I could take advantage of cos(90)=0 and sin(90)=1

Useful identities
sin(2x)=2sin(x)cos(x)
cos(2x)=cos^2(x)-sin^2(x)=1-2sin^2(x)=2cos^2(x)-1
sin(3x)=3sin(x)-4sin^3(x)
cos(3x)=4cos^3(x)-3cos(x)
sin(A-B)=sin(A)cos(B)-sin(B)cos(A)
cos^2(x)=1-sin^2(x)

    \begin{equation*}sin(90-3(18))=sin(2(18))\end{equation}

    \begin{equation*}sin(90)cos(3(18))-sin(3(18))cos(90)=2sin(18)cos(18)\end{equation}

    \begin{equation*}cos(3(18))=2sin(18)cos(18)\end{equation}

    \begin{equation*}4cos^3(18)-3cos(18)=2sin(18)cos(18)\end{equation}

    \begin{equation*}4cos^3(18)-3cos(18)-2sin(18)cos(18)=0\end{equation}

    \begin{equation*}cos(18)(4cos^2(18)-3-2sin(18))=0\end{equation}

Hence,

    \begin{equation*}4cos^2(18)-2sin(18)-3=0\end{equation}

    \begin{equation*}4-4sin^2(18)-2sin(18)-3=0\end{equation}

    \begin{equation*}-4sin^2(18)-2sin(18)+1=0\end{equation}

Use the quadratic equation formula

    \begin{equation*}sin(18)=\frac{-b\pm \sqrt{b^2-4ac}}{2a}\end{equation}

    \begin{equation*}sin(18)=\frac{2 \pm \sqrt{4-4(-4)(1)}}{-8}\end{equation}

    \begin{equation*}sin(18)=\frac{2 \pm \sqrt{20}}{-8}\end{equation}

    \begin{equation*}sin(18)=\frac{-2 \mp 2\sqrt{5}}{8}\end{equation}

    \begin{equation*}sin(18)=\frac{-1 \mp \sqrt{5}}{4}\end{equation}

As sin(18)>0, sin(18)=\frac{-1+\sqrt{5}}{4}

sin(18)=\frac{-1+\sqrt{5}}{4}

Leave a Comment

Filed under Addition and Subtraction Identities, Algebra, Identities, Quadratic, Quadratics, Solving, Solving Equations, Solving Trig Equations, Trigonometry, Year 11 Specialist Mathematics

Geometry Problem

Geometry Snacks by Ed Southall and Vincent Pantaloni

I started by trisecting another side of the triangle

This makes it clearer that the two lines are parallel

Which means the two angles labelled above are corresponding and therefore congruent.

Let the side length be x.

The area of the equilateral triangle is

(1)   \begin{equation*}A=\frac{1}{2}x^2 sin(60)=\frac{\sqrt{3}x^2}{4}\end{equation*}

    \begin{equation*}cos(60)=\frac{y}{\frac{2x}{3}}\end{equation}

    \begin{equation*}y=\frac{x}{3}\end{equation}

Area of right triangle

(2)   \begin{equation*}A=(\frac{1}{2})(\frac{2x}{3})(\frac{x}{3})sin(60)=\frac{\sqrt{3}x^2}{18}\end{equation*}

The fraction of the area is

    \begin{equation*}=\frac{\frac{\sqrt{3}x^2}{18}}{\frac{\sqrt{3}x^2}{4}}=\frac{2}{9}\end{equation}

Leave a Comment

Filed under Algebra, Area, Area of Triangles (Sine), Finding an area, Geometry, Puzzles, Right Trigonometry, Simplifying fractions, Trigonometry