Trig Identities and Exact Values

My Year 11 Specialist Mathematics students are working on Trig identities. We came across this question

Without the use of a calculator, evaluate
(a) cos20^\circ\times cos40^\circ\times cos80^\circ

(b)cos(\frac{\pi}{7})\times cos(\frac{2\pi}{7})\times cos(\frac{4\pi}{7})

OT Lee Year 11 Specialist Mathematics textbook

I spent a bit of time thinking about the question. Can you use a product to sum identity twice? But I was always being left with an angle that doesn’t have a nice exact value.

I tried a few things, had a chat to Meta AI, and finally stumbled upon this method.

Remember

    \begin{equation*}sin(2x)=2sin(x)cos(x)\end{equation}

Which can be rearranged to

    \begin{equation*}cos(x)=\frac{sin(2x)}{sin(x)}\end{equation}

(a) cos20^\circ\times cos40^\circ\times cos80^\circ=\frac{sin(40)}{2sin(20)}\frac{sin(80)}{2sin(40)}\frac{sin(160)}{2sin(80)}

Which simplifies to

    \begin{equation*}\frac{sin(160)}{8sin(20)}\end{equation}

Now sin(160)=sin(20)

Hence cos20^\circ\times cos40^\circ\times cos80^\circ=\frac{1}{8}

And we will do the same for part (b)

cos(\frac{\pi}{7})\times cos(\frac{2\pi}{7})\times cos(\frac{4\pi}{7})=\frac{sin(\frac{2\pi}{7})}{2sin(\frac{\pi}{7})}\frac{sin(\frac{4\pi}{7})}{2sin(\frac{2\pi}{7})}\frac{sin(\frac{8\pi}{7})}{2sin(\frac{4\pi}{7})}

Which simplifies to

cos(\frac{\pi}{7})\times cos(\frac{2\pi}{7})\times cos(\frac{4\pi}{7})=\frac{sin(\frac{8\pi}{7})}{8sin(\frac{\pi}{7})}

Now sin(\frac{8\pi}{7})=-sin(\frac{\pi}{7})

Hence cos(\frac{\pi}{7})\times cos(\frac{2\pi}{7})\times cos(\frac{4\pi}{7})=\frac{-1}{8}

And then I had to test them on my Classpad.

Leave a Comment

Filed under Classpad Skills, Identities, Simplifying fractions, Trigonometry, Year 11 Specialist Mathematics

Leave a Reply

Your email address will not be published. Required fields are marked *