Combinations Proof

Prove \begin{pmatrix}n+1\\r\end{pmatrix}=\begin{pmatrix}n\\r-1\end{pmatrix}+\begin{pmatrix}n\\r\end{pmatrix}

Let’s start with the right hand side.

RHS=\begin{pmatrix}n\\r-1\end{pmatrix}+\begin{pmatrix}n\\r\end{pmatrix}

RHS=\frac{n!}{(n-(r-1))!(r-1)!}+\frac{n!}{(n-r)!r!}

Simplify

RHS=\frac{n!}{(n+1-r)!}+\frac{n!}{(n-r)!r!}

There is a common denominator of (n+1-r)!r!

RHS=\frac{n!}{(n+1-r)!}\times \frac{r}{r}+\frac{n!}{(n-r)!r!}\times \frac{n+1-r}{n+1-r}

RHS=\frac{n!r+n!(n+1-r)}{(n+1-r)r!}

RHS=\frac{n!r+(n+1)n!-n!r}{(n+1-r)!r!}

RHS=\frac{(n+1)!}{(n+1-r)!r!}

RHS=\begin{pmatrix}n+1\\r\end{pmatrix}

RHS=LHS

We know this intuitively from Pascal’s triangle

Where each entry is the sum of the two entries above it – for example,

6+4=10

Remember, Pascal’s triangle can be written as combinations,

so \begin{pmatrix}5\\3\end{pmatrix}=\begin{pmatrix}4\\2\end{pmatrix}+\begin{pmatrix}4\\3\end{pmatrix}

Leave a Comment

Filed under Algebra, Counting Techniques, Year 11 Mathematical Methods

Leave a Reply

Your email address will not be published. Required fields are marked *