Integration Question (much easier with Integration by Parts)

The Year 12 Mathematics Methods course doesn’t cover Integration by Parts, so they end up with questions like the following.

Determine the following:
(a) \frac{d}{dx} \left (e^{2x}sin(3x) \right )
(b) \frac{d}{dx} \left (e^{2x}cos(3x) \right )
Hence, determine the following integral by considering both parts (a) and (b)
\int_0^{\frac{\pi}{2}}13e^2xcos(3x) \enspace  dx

(a) Use the product rule

(1)   \begin{equation*}\frac{d}{dx} \left (e^{2x}sin(3x) \right)= 2e^{2x}sin(3x)+3e^{2x}cos(3x) \end{equation*}

(b)

(2)   \begin{equation*}\frac{d}{dx} \left (e^{2x}cos(3x) \right )=2e^{2x}cos(3x)-3e^{2x}sin(3x)\end{equation*}

I need to use equations 1 and 2 to find \int_0^{\frac{\pi}{2}}13e^2xcos(3x) \enspace  dx.

The e^{2x}sin(3x) terms need to vanish and I need 13 of the e^{2x}cos(3x) terms.

3\times \text{equation} (1)+ 2\times \text{equation} (2)

(3)   \begin{equation*}3\frac{d}{dx} \left (e^{2x}sin(3x) \right)= 6e^{2x}sin(3x)+9e^{2x}cos(3x) \end{equation*}

(4)   \begin{equation*}2\frac{d}{dx} \left (e^{2x}cos(3x) \right )=4e^{2x}cos(3x)-6e^{2x}sin(3x)\end{equation*}

Equation 3 plus equation 4

(5)   \begin{equation*}3\frac{d}{dx} \left (e^{2x}sin(3x) \right)+2\frac{d}{dx} \left (e^{2x}cos(3x) \right )=13e^{2x}cos(3x)\end{equation*}

Integrate both sides of the equation

\int_0^{\frac{\pi}{2}} \left (3\frac{d}{dx} \left (e^{2x}sin(3x) \right)+2\frac{d}{dx} \left (e^{2x}cos(3x) \right )  \right ) dx=\int_0^{\frac{\pi}{2}}13e^{2x}cos(3x) \enspace dx

By the fundamental theorem of calculus, we know

(3e^{2x}sin(3x) \right)+2 \left (e^{2x}cos(3x) \right ]_0^{\frac{\pi}{2}}=\int_0^{\frac{\pi}{2}}13e^{2x}cos(3x) \enspace dx

3e^{\pi}sin(\frac{3\pi}{2}})+2e^{\pi}cos(\frac{3\pi}{2}})-3e^0sin(3(0))-2e^0cos(3(0))=\int_0^{\frac{\pi}{2}}13e^{2x}cos(3x) \enspace dx

\int_0^{\frac{\pi}{2}}13e^{2x}cos(3x) \enspace dx=-3e^{\pi}-2

Integration by Parts

Remember \int u\enspace dv=uv-\int v \enspace du

\int_0^{\frac{\pi}{2}}e^{2x}cos(3x) \enspace dx

Let u=cos(3x), then du=-3sin(3x)

and dv=e^{2x}, then v=\frac{e^{2x}}{2}

\int_0^{\frac{\pi}{2}}e^{2x}cos(3x) \enspace dx = \left (cos(3x)\left (\frac{e^{2x}}{2}\right ) \right )_0^{\frac{\pi}{2}}-\int_0^{\frac{\pi}{2}} \frac{e^{2x}}{2}(-3sin(3x)) \enspace dx

\int_0^{\frac{\pi}{2}}e^{2x}cos(3x) \enspace dx=cos(\frac{3\pi}{2})(\frac{e^\pi}{2})-cos(0)(\frac{e^0}{2})+\frac{3}{2}\int_0^{\frac{\pi}{2}}sin(3x)e^{2x} \enspace dx

\int_0^{\frac{\pi}{2}}e^{2x}cos(3x) \enspace dx=-\frac{1}{2}+\frac{3}{2}\int_0^{\frac{\pi}{2}}sin(3x)e^{2x} \enspace dx

Let u=sin(3x), then du=3cos(3x)

and dv=e^{2x}. then v=\frac{e^{2x}}{2}

\int_0^{\frac{\pi}{2}}e^{2x}cos(3x) \enspace dx=-\frac{1}{2}+\frac{3}{2}(\frac{e^{2x}}{2}sin(3x)]_0^{\frac{\pi}{2}}-\int_0^{\frac{\pi}{2}} \frac{e^{2x}}{2}(3cos(3x)) \enspace dx)

\int_0^{\frac{\pi}{2}}e^{2x}cos(3x) \enspace dx=-\frac{1}{2}+\frac{3}{2}(-\frac{e^\pi}{2}-\frac{3}{2} \int_0^{\frac{\pi}{2}} e^{2x}cos(3x) \enspace dx)

\int_0^{\frac{\pi}{2}}e^{2x}cos(3x) \enspace dx=-\frac{1}{2}-\frac{3e^\pi}{4}-\frac{9}{4} \int_0^{\frac{\pi}{2}} e^{2x}cos(3x) \enspace dx

Collect like terms (the integrals are like)

\frac{13}{4}(\int_0^{\frac{\pi}{2}}e^{2x}cos(3x) \enspace dx)=-\frac{1}{2}-\frac{3e^\pi}{4}

(\int_0^{\frac{\pi}{2}}e^{2x}cos(3x) \enspace dx)=\frac{-2-3e^\pi}{13}

Leave a Comment

Filed under Algebra, Calculus, Integration, Integration by Parts, Year 12 Mathematical Methods

Leave a Reply

Your email address will not be published. Required fields are marked *