Monthly Archives: October 2025

Integration Question (much easier with Integration by Parts)

The Year 12 Mathematics Methods course doesn’t cover Integration by Parts, so they end up with questions like the following.

Determine the following:
(a) \frac{d}{dx} \left (e^{2x}sin(3x) \right )
(b) \frac{d}{dx} \left (e^{2x}cos(3x) \right )
Hence, determine the following integral by considering both parts (a) and (b)
\int_0^{\frac{\pi}{2}}13e^{2x}cos(3x) \enspace dx

(a) Use the product rule

(1)   \begin{equation*}\frac{d}{dx} \left (e^{2x}sin(3x) \right)= 2e^{2x}sin(3x)+3e^{2x}cos(3x) \end{equation*}

(b)

(2)   \begin{equation*}\frac{d}{dx} \left (e^{2x}cos(3x) \right )=2e^{2x}cos(3x)-3e^{2x}sin(3x)\end{equation*}

I need to use equations 1 and 2 to find \int_0^{\frac{\pi}{2}}13e^2xcos(3x) \enspace  dx.

The e^{2x}sin(3x) terms need to vanish and I need 13 of the e^{2x}cos(3x) terms.

3\times \text{equation} (1)+ 2\times \text{equation} (2)

(3)   \begin{equation*}3\frac{d}{dx} \left (e^{2x}sin(3x) \right)= 6e^{2x}sin(3x)+9e^{2x}cos(3x) \end{equation*}

(4)   \begin{equation*}2\frac{d}{dx} \left (e^{2x}cos(3x) \right )=4e^{2x}cos(3x)-6e^{2x}sin(3x)\end{equation*}

Equation 3 plus equation 4

(5)   \begin{equation*}3\frac{d}{dx} \left (e^{2x}sin(3x) \right)+2\frac{d}{dx} \left (e^{2x}cos(3x) \right )=13e^{2x}cos(3x)\end{equation*}

Integrate both sides of the equation

\int_0^{\frac{\pi}{2}} \left (3\frac{d}{dx} \left (e^{2x}sin(3x) \right)+2\frac{d}{dx} \left (e^{2x}cos(3x) \right )  \right ) dx=\int_0^{\frac{\pi}{2}}13e^{2x}cos(3x) \enspace dx

By the fundamental theorem of calculus, we know

(3e^{2x}sin(3x) \right)+2 \left (e^{2x}cos(3x) \right ]_0^{\frac{\pi}{2}}=\int_0^{\frac{\pi}{2}}13e^{2x}cos(3x) \enspace dx

3e^{\pi}sin(\frac{3\pi}{2}})+2e^{\pi}cos(\frac{3\pi}{2}})-3e^0sin(3(0))-2e^0cos(3(0))=\int_0^{\frac{\pi}{2}}13e^{2x}cos(3x) \enspace dx

\int_0^{\frac{\pi}{2}}13e^{2x}cos(3x) \enspace dx=-3e^{\pi}-2

Integration by Parts

Remember \int u\enspace dv=uv-\int v \enspace du

\int_0^{\frac{\pi}{2}}e^{2x}cos(3x) \enspace dx

Let u=cos(3x), then du=-3sin(3x)

and dv=e^{2x}, then v=\frac{e^{2x}}{2}

\int_0^{\frac{\pi}{2}}e^{2x}cos(3x) \enspace dx = \left (cos(3x)\left (\frac{e^{2x}}{2}\right ) \right )_0^{\frac{\pi}{2}}-\int_0^{\frac{\pi}{2}} \frac{e^{2x}}{2}(-3sin(3x)) \enspace dx

\int_0^{\frac{\pi}{2}}e^{2x}cos(3x) \enspace dx=cos(\frac{3\pi}{2})(\frac{e^\pi}{2})-cos(0)(\frac{e^0}{2})+\frac{3}{2}\int_0^{\frac{\pi}{2}}sin(3x)e^{2x} \enspace dx

\int_0^{\frac{\pi}{2}}e^{2x}cos(3x) \enspace dx=-\frac{1}{2}+\frac{3}{2}\int_0^{\frac{\pi}{2}}sin(3x)e^{2x} \enspace dx

Let u=sin(3x), then du=3cos(3x)

and dv=e^{2x}. then v=\frac{e^{2x}}{2}

\int_0^{\frac{\pi}{2}}e^{2x}cos(3x) \enspace dx=-\frac{1}{2}+\frac{3}{2}(\frac{e^{2x}}{2}sin(3x)]_0^{\frac{\pi}{2}}-\int_0^{\frac{\pi}{2}} \frac{e^{2x}}{2}(3cos(3x)) \enspace dx)

\int_0^{\frac{\pi}{2}}e^{2x}cos(3x) \enspace dx=-\frac{1}{2}+\frac{3}{2}(-\frac{e^\pi}{2}-\frac{3}{2} \int_0^{\frac{\pi}{2}} e^{2x}cos(3x) \enspace dx)

\int_0^{\frac{\pi}{2}}e^{2x}cos(3x) \enspace dx=-\frac{1}{2}-\frac{3e^\pi}{4}-\frac{9}{4} \int_0^{\frac{\pi}{2}} e^{2x}cos(3x) \enspace dx

Collect like terms (the integrals are like)

\frac{13}{4}(\int_0^{\frac{\pi}{2}}e^{2x}cos(3x) \enspace dx)=-\frac{1}{2}-\frac{3e^\pi}{4}

(\int_0^{\frac{\pi}{2}}e^{2x}cos(3x) \enspace dx)=\frac{-2-3e^\pi}{13}

Leave a Comment

Filed under Algebra, Calculus, Integration, Integration by Parts, Year 12 Mathematical Methods

Fundamental Theorem of Calculus

(1)   \begin{equation*}\frac{d}{dx} \left (\int_2^{f(x)} g(t) dt \right )=g(f(x))f'(x)\end{equation*}

My Year 12 Mathematics Methods students are getting ready for their exam, and questions using the above idea have created a bit of consternation. I am going to work through an example, and show why the ‘formula’ works.

Example

Find \frac{d}{dx} \left ( \int_2^{x^2} 4t^2+3t \enspace dt \right ).

    \begin{equation*}=\frac{d}{dx} \left (\frac{4t^3}{3}+\frac{3t^2}{2} \right ]_2^{x^2}\end{equation}

    \begin{equation*}=\frac{d}{dx} \left ( \frac{4(x^2)^3}{3}+\frac{3(x^2)^2}{2} -(\frac{4(2^3)}{3}+\frac{3(2^2)}{2} \right )\end{equation}

    \begin{equation*}=\frac{d}{dx} \left (\frac{4x^6}{3}+\frac{3x^4}{2}-\frac{50}{3} \right) \end{equation}

    \begin{equation*}=\frac{24x^5}{3}+\frac{12x^3}{2}\end{equation}

(2)   \begin{equation*}=8x^5+6x^3\end{equation*}

If we used ‘formula’ 1

    \begin{equation*}\frac{d}{dx} \left ( \int_2^{x^2} 4t^2+3t \enspace dt \right )=(4(x^2)^2+3(x^2))(2x)\end{equation}

\

(3)   \begin{equation*}\frac{d}{dx} \left ( \int_2^{x^2} 4t^2+3t \enspace dt \right )=8x^5+6x^3 \end{equation*}

We can see equation 2 and 3 are the same.

More formally

    \begin{equation*}\frac{d}{dx} \left ( \int_c^{f(x)} g(t) dt \right )=\frac{d}{dx} \left (G(f(x))-G(c) \right ) \end{equation}

Remember \frac{d}{dx} \left (f(g(x)) \right )=f'(g(x))\times g'(x)

    \begin{equation*}\frac{d}{dx} \left (G(f(x))-G(c) \right ) =G'(f(x))f'(x)=g(f(x))\times f'(x)\end{equation}

Leave a Comment

Filed under Calculus, Chain Rule, Differentiation, Integration, Year 12 Mathematical Methods

Hard Equation Solving Question

Find the value(s) of k such that the equation below has two numerically equal but opposite sign solutions (e.g. 5 and -5).

    \begin{equation*}\frac{x^2-2x}{4x-1}=\frac{k-1}{k+1}\end{equation}

    \begin{equation*}(x^2-2x)(k+1)=(k-1)(4x-1)\end{equation}

    \begin{equation*}(k+1)x^2-2kx-2x=4kx-k-4x+1\end{equation}

    \begin{equation*}(k+1)x^2-2kx-4kx-2x+4x-1=0\end{equation}

    \begin{equation*}(k+1)^2x^2-(6k-2)x-1=0\end{equation}

For there to be two numerically equal but opposite sign solutions, the b term of the quadratic equation must be 0.

    \begin{equation*}6k-2=0\end{equation}

Hence k=\frac{1}{3}.

When k=\frac{1}{3} the equation becomes

    \begin{equation*}\frac{x^2-2x}{4x-1}=\frac{\frac{-2}{3}}{\frac{4}{3}}\end{equation}

    \begin{equation*}\frac{x^2-2x}{4x-1}=\frac{-1}{2}\end{equation}

    \begin{equation*}2x^2-4x=-4x+1\end{equation}

    \begin{equation*}2x^2-1=0\end{equation}

    \begin{equation*}x^2=\frac{1}{2}\end{equation}

    \begin{equation*}x=\pm \frac{1}{\sqrt{2}}\end{equation}

Leave a Comment

Filed under Algebra, Polynomials, Quadratic, Quadratics, Solving, Solving, Solving Equations

Trigonometric Exact Values

Find exactly sin(18^\circ)

We must be able to find an arithmetic combination of the exact values we knew to find 18.

    \begin{equation*}90=5\times 18\end{equation}

    \begin{equation*}90-3(18)=2(18)\end{equation}

I re-arranged as above, so I could take advantage of cos(90)=0 and sin(90)=1

Useful identities
sin(2x)=2sin(x)cos(x)
cos(2x)=cos^2(x)-sin^2(x)=1-2sin^2(x)=2cos^2(x)-1
sin(3x)=3sin(x)-4sin^3(x)
cos(3x)=4cos^3(x)-3cos(x)
sin(A-B)=sin(A)cos(B)-sin(B)cos(A)
cos^2(x)=1-sin^2(x)

    \begin{equation*}sin(90-3(18))=sin(2(18))\end{equation}

    \begin{equation*}sin(90)cos(3(18))-sin(3(18))cos(90)=2sin(18)cos(18)\end{equation}

    \begin{equation*}cos(3(18))=2sin(18)cos(18)\end{equation}

    \begin{equation*}4cos^3(18)-3cos(18)=2sin(18)cos(18)\end{equation}

    \begin{equation*}4cos^3(18)-3cos(18)-2sin(18)cos(18)=0\end{equation}

    \begin{equation*}cos(18)(4cos^2(18)-3-2sin(18))=0\end{equation}

Hence,

    \begin{equation*}4cos^2(18)-2sin(18)-3=0\end{equation}

    \begin{equation*}4-4sin^2(18)-2sin(18)-3=0\end{equation}

    \begin{equation*}-4sin^2(18)-2sin(18)+1=0\end{equation}

Use the quadratic equation formula

    \begin{equation*}sin(18)=\frac{-b\pm \sqrt{b^2-4ac}}{2a}\end{equation}

    \begin{equation*}sin(18)=\frac{2 \pm \sqrt{4-4(-4)(1)}}{-8}\end{equation}

    \begin{equation*}sin(18)=\frac{2 \pm \sqrt{20}}{-8}\end{equation}

    \begin{equation*}sin(18)=\frac{-2 \mp 2\sqrt{5}}{8}\end{equation}

    \begin{equation*}sin(18)=\frac{-1 \mp \sqrt{5}}{4}\end{equation}

As sin(18)>0, sin(18)=\frac{-1+\sqrt{5}}{4}

sin(18)=\frac{-1+\sqrt{5}}{4}

Leave a Comment

Filed under Addition and Subtraction Identities, Algebra, Identities, Quadratic, Quadratics, Solving, Solving Equations, Solving Trig Equations, Trigonometry, Year 11 Specialist Mathematics

Converting base 10 numbers to base 2

Converting integers to base 2 is reasonably easy.

For example, what is 82 in base 2?

Think about powers of 2

n2^n
01 (‘ones’)
12 (‘tens’)
24 (‘hundreds)
38 (‘thousands’)

Make 82 the sum of powers of 2.

82=64+16+2=1\times 2^6+0\times 2^5+ 1\times 2^4+0\times 2^3+0\times 2^2+1 \times 2^1+0\times 2^0=1010010

We follow the same approach for real numbers

n2^n
-3\frac{1}{8}=0.125
-2\frac{1}{4}=0.25
-1\frac{1}{2}=0.5
01 (‘ones’)
12 (‘tens’)
24 (‘hundreds)
38 (‘thousands’)

Convert 0.765625 to base 2

0.765625\times 2=1.53125 the first number is 1

0.53125\times 2=1.0625 the second number is 1

0.0625\times 2=0.125 the third number is 0

0.125\times 2=0.25 the fourth number is 0

0.25\times 2=0.5 the fifth number is 0

0.5\times 2=1 the sixth number is 1 and we have finished

0.765625=0.110001_2

What about something like 2.\overline{4}?

The non-decimal part 2=10

0.\overline{4}\times 2=0.\overline{8} first number is zero

0\overline{8}\times 2=1.\overline{7} second number is 1

0.\overline{7}\times 2=1.\overline{5} third number is 1

0.\overline{5}\times 2=1.\overline{1} fourth number is 1

0.\overline{1}\times 2=0.\overline{2} fifth number is 0

0.\overline{2}\times 2=0.\overline{4} sixth number is 0

We are back to where we started, so 2.\overline{4}=10.0111000111000..._2=10.\overline{0.11100}_2

Leave a Comment

Filed under Arithmetic, Decimals, Fractions, Number Bases