Eigenvalues and Eigenvectors

My Year 11 Specialist students have had an investigation which involves finding eigenvalues, eigenvectors and lines that are invariant under a particular linear transformation. This is not part of the course, but I feel for teachers who have to create new investigations every year.

Let’s find the eigenvalues and eigenvectors for matrix T=\begin{bmatrix}-\frac{1}{2}&-\frac{\sqrt{3}}{2}\\-\frac{\sqrt{3}}{2}&\frac{1}{2}\end{bmatrix}

We want to find \lambda such that

(1)   \begin{equation*}T\textbf{v}=\lambda \textbf{v}\end{equation*}

We solve det(T-\lambda I)=0

    \begin{equation*}T-\lambda I=\begin{bmatrix}-\frac{1}{2}-\lambda&-\frac{\sqrt{3}}{2}\\-\frac{\sqrt{3}}{2}&\frac{1}{2}-\lambda\end{bmatrix}\end{equation}

det\left (T-\lambda I \right )=\left (-\frac{1}{2}-\lambda \right ) \left ( \frac{1}{2}-\lambda \right )- \left (-\frac{\sqrt{3}}{2} \right ) \left ( -\frac{\sqrt{3}}{2} \right )

Hence 0=\lambda^2-1 and \lambda=\pm 1

When \lambda=1, \begin{bmatrix}-\frac{1}{2}&-\frac{\sqrt{3}}{2}\\-\frac{\sqrt{3}}{2}&\frac{1}{2}\end{bmatrix}\begin{bmatrix}x_1\\x_2\end{bmatrix}=\begin{bmatrix}x_1\\x_2\end{bmatrix}

Hence, -\frac{x_1}{2}-\frac{\sqrt{3}x_2}{2}=x_1

x_2=-\frac{3x_1}{\sqrt{3}} and the eigenvector is \begin{bmatrix}1\\-\sqrt{3}\end{bmatrix}

When \lambda=-1, \begin{bmatrix}-\frac{1}{2}&-\frac{\sqrt{3}}{2}\\-\frac{\sqrt{3}}{2}&\frac{1}{2}\end{bmatrix}\begin{bmatrix}x_1\\x_2\end{bmatrix}=\begin{bmatrix}-x_1\\-x_2\end{bmatrix}

Hence, -\frac{x_1}{2}-\frac{\sqrt{3}x_2}{2}=-x_1

x_2=\frac{x_1}{\sqrt{3}} and the eigenvector is \begin{bmatrix}1\\\frac{1}{\sqrt{3}}\end{bmatrix}

Which means the invariant lines are y=-\sqrt{3}x and y=\frac{x}{\sqrt{3}}

A quadrilateral with vertices on our lines
The vertices after they have been transformed – A and C remain in the same place (they are on the \lambda=1 line)
The quadrilateral (purple) after the transformation

Leave a Comment

Filed under Co-ordinate Geometry, Eigenvalues, Matrices, Transformations, Vectors, Year 11 Specialist Mathematics

Leave a Reply

Your email address will not be published. Required fields are marked *