Trigonometric Exact Value

Using an appropriate double angle identity, find the exact value of
cos(\frac{\pi}{12})

The double angle identity for sine is

(1)   \begin{equation*}cos(2A)=cos^2A-sin^2A=2cos^2A-1=1-2sin^2A\end{equation*}

That means \frac{\pi}{12} is either 2A or A.

It must be A as 2\times\frac{\pi}{12}=\frac{\pi}{6} as there are exact values for \frac{\pi}{6}

Hence,

    \begin{equation*}cos{\frac{\pi}{6}}=2cos^2{\frac{\pi}{12}}-1\end{equation}

    \begin{equation*}\frac{\sqrt{3}}{2}=2cos^2{\frac{\pi}{12}}-1\end{equation}

    \begin{equation*}\frac{\sqrt{3}}{2}+1=2cos^2{\frac{\pi}{12}}\end{equation}

    \begin{equation*}\frac{\frac{\sqrt{3}}{2}+1}{2}=cos^2{\frac{\pi}{12}}\end{equation}

    \begin{equation*}\frac{\sqrt{3}+2}{4}=cos^2{\frac{\pi}{12}}\end{equation}

    \begin{equation*}\sqrt{\frac{\sqrt{3}+2}{4}}=cos{\frac{\pi}{12}}\end{equation}

As \frac{\pi}{12} is in the first quadrant, we don’t need to consider the negative version.

    \begin{equation*}cos(\frac{\pi}{12})=\frac{\sqrt{3}+2}{2}\end{equation}

Leave a Comment

Filed under Algebra, Identities, Trigonometry, Year 11 Mathematical Methods

Leave a Reply

Your email address will not be published. Required fields are marked *