Monthly Archives: June 2025

Square Root Puzzle

Is it possible to find three numbers, a, b, c, none of which is zero or a perfect square, such that
\sqrt{a}+\sqrt{b}=\sqrt{c}

Can You Solve These – David Wells

As a, b and c can’t be perfect squares, let a=d\times e^2, b=f\times g^2 and c=h\times k^2 where d, e, f, g, h and k are real numbers.

Hence \sqrt{a}=e\sqrt{d}, \sqrt{b}=g\sqrt{f} and \sqrt{c}=k\sqrt{h}.

    \begin{equation*}\sqrt{a}+\sqrt{b}=\sqrt{c}\end{equation}

    \begin{equation*}e\sqrt{d}+g\sqrt{f}=k\sqrt{h}\end{equation}

For the above equation to be possible d, f and h must simplify to the same surd. Because we are looking for one set of numbers, let d=f=h.

    \begin{equation*}e\sqrt{d}+g\sqrt{d}=k\sqrt{d}\end{equation}

    \begin{equation*}e+g=k\end{equation}

Let’s think of some numbers that might work…

1+2=3 or 2+3=5, etc.

Let’s try e=1, g=2, and k=3

We now have a=d, b=4d, and c=9d

As a can’t be a square number, d can’t be a square number.

Try d=2

    \begin{equation*}\sqrt{2}+\sqrt{8}=\sqrt{18}\end{equation}

LHS=\sqrt{2}+2\sqrt{2}

LHS=3\sqrt{2}

LHS=\sqrt{9\times 2}

LHS=\sqrt{18}

LHS=RHS

One set of possible numbers are 2, 8,and 18.

Leave a Comment

Filed under Algebra, Interesting Mathematics, Puzzles

Closest Approach (Shortest Distance) e-activity (Casio Classpad)

At 1pm, object H travelling with constant velocity \begin{pmatrix}200\\10\end{pmatrix}km/h is sighted at the point with position vector \begin{pmatrix}-90\\-100\end{pmatrix}km. At 2pm object J travelling with constant velocity \begin{pmatrix}100\\-100\end{pmatrix}km/h is sighted at the point with position vector \begin{pmatrix}20\\-120\end{pmatrix}km. Determine the minimum distance between H and J and when this occurs.

OT Lee Mathematics Specialist Year 11 Unit 1 and 2 Exercise 10.1 Question 6.

(1)   \begin{equation*}\mathbf{r_H}=\begin{pmatrix}-90\\-100\end{pmatrix}+t\begin{pmatrix}200\\10\end{pmatrix}\end{equation*}

(2)   \begin{equation*}\mathbf{r_J}=\begin{pmatrix}-80\\-20\end{pmatrix}+t\begin{pmatrix}100\\-100\end{pmatrix}\end{equation*}

\begin{pmatrix}-80\\-20\end{pmatrix} is the position vector of J at 1pm.

Find the relative displacement of H to J

    \begin{equation*}\mathbf{_H}\mathbf{r_J}=\mathbf{r_H}-\mathbf{r_J}\end{equation}

    \begin{equation*}\mathbf{_H}\mathbf{r_J}=\begin{pmatrix}-90\\-100\end{pmatrix}+t\begin{pmatrix}200\\10\end{pmatrix}-(\begin{pmatrix}-80\\-20\end{pmatrix}+t\begin{pmatrix}100\\-100\end{pmatrix})\end{equation}

    \begin{equation*}\mathbf{_H}\mathbf{r_J}=\begin{pmatrix}-10\\-80\end{pmatrix}+t\begin{pmatrix}100\\110\end{pmatrix}\end{equation}

Find the relative velocity of H to J

    \begin{equation*}\mathbf{_H}\mathbf{v_J}=\begin{pmatrix}100\\110\end{pmatrix}\end{equation}

The relative displacement is perpendicular to the relative velocity at the closest approach.

That is

(3)   \begin{equation*}\mathbf{_H}\mathbf{r_J}\cdot\mathbf{_H}\mathbf{v_J}=0\end{equation*}

    \begin{equation*}(\begin{pmatrix}-10\\-80\end{pmatrix}+t\begin{pmatrix}100\\110\end{pmatrix})\cdot(\begin{pmatrix}100\\110\end{pmatrix})=0\end{equation}

    \begin{equation*}(-10+100t)(100)+(-80+110t)(110)=0\end{equation}

    \begin{equation*}-1000+10 000t-8800+12100t=0\end{equation}

    \begin{equation*}22100t=9800\end{equation}

    \begin{equation*}t=\frac{98}{221}\end{equation}

Substitute t=\frac{98}{221} into the relative displacement and find the magnitude.

    \begin{equation*}\mathbf{_H}\mathbf{r_J}=\begin{pmatrix}-10\\-80\end{pmatrix}+\frac{98}{221}\begin{pmatrix}100\\110\end{pmatrix}\end{equation}

    \begin{equation*}\mathbf{_H}\mathbf{r_J}=\begin{pmatrix}34\frac{76}{221}\\-31\frac{49}{221}\end{pmatrix}\end{equation}

    \begin{equation*}\|\begin{pmatrix}34\frac{76}{221}\\-31\frac{49}{221}\end{pmatrix}\|=46.4\end{equation}

The closest objects H and J get to each other is 46.4km at 1:27pm.

I have made an e-activity for this.

Leave a Comment

Filed under Classpad Skills, Closest Approach, Vectors, Year 11 Mathematical Methods