Monthly Archives: May 2025

A Counting Question

How many three digit numbers can you form from the digits 1, 2, 3, 4 and 5 if

(a) the digits must occur in increasing order?

(b) adjacent digits differ by 2?

Cambridge Year 11 Specialist Mathematics Skill Sheet 1A

(a) There are 5\times 4\times 3=60 permutations of three digits from the five digits, but how many of those are in the right order?

Each set of 3 digits has 6 arrangements (3\times 2\times 1=6).

For example, if the set is {1, 2, 3}, then the possible arrangements are:

123, 132, 213, 231, 312, and 321.

Only one of those arrangements is in numerical order.

Hence what we want is \begin{pmatrix}5\\3\end{pmatrix}=10

(b) I think this one is more about creating a list. I shall start with 1

135, 531, 131, 242, 353, 424, 535, 315

There are 8 possibilities.

Leave a Comment

Filed under Counting Techniques, Year 11 Specialist Mathematics

Circle Geometry Problem

In the diagram, points A, B, C, D and Q lie on a circle centre O, radius 6 cm and diameter BQ, \angle{ABQ}=50^\circ, AB is parallel to DO and point P lies on diameter BQ such that OP=DP=4cm.

(a) Find \angle{BCD}

(b) Determine the length of PC.

\angle{BOD}=180^\circ-50^\circ=130^\circ (Co-interior angles in parallel lines are supplementary.)

\angle{BCD}=\frac{1}{2}\times 130=65^\circ (Angles subtended by the same arc. The angle at the centre is twice the angle at the circumference.)

\angle{BCD}=65^\circ.

Let PC=x

From the intersecting chord theorem

    \begin{equation*}4\times x=2\times 10\end{equation}

    \begin{equation*}4x=20\end{equation}

    \begin{equation*}x=5\end{equation}

PC=5cm


A chord AB of a circle O is extended to C. The straight line bisecting \angle{OAB} meets the circle at E. Let \angle{BAE}=x. Prove that EB bisects \angle{OBC}.

\angle{BAO}=2x (AE bisects \angle {BAO})

\Delta AOB is isosceles (AO=B0 radii of the circle)

\angle{ABO}=2x (Equal angles in isosceles triangle)

Therefore \angle {AOB}=180^\circ-4x (angle sum of a triangle)

\angle {BEA}=90^\circ-2x (angle at the circumference is half angle at the centre)

\angle{ABE}=180^\circ-x-(90^\circ-2x)=90^\circ+x (angle sum of a triangle)

\angle{CBE}=180^\circ-(90^\circ+x)=90^\circ-x (angles on a straight line)

\angle{OBE}=90^\circ+x-2x=90^\circ-x

\angle{OBE}=\angle{CBE}

Hence, BE bisects \angle{OBC}

Leave a Comment

Filed under Circle Theorems, Geometry, Uncategorized, Year 11 Specialist Mathematics

Perfect Squares

Find all of the positive integers that make the following expression a perfect square.

(1)   \begin{equation*}(x-10)(x+14)\end{equation*}

Let

    \begin{equation*}(x-10)(x+14)=n^2\end{equation}

where n is an integer.

Expand and simplify

    \begin{equation*}x^2+4x-140=n^2\end{equation}

    \begin{equation*}x^2-4x-n^2=140\end{equation}

Complete the square

    \begin{equation*}(x+2)^2-4-n^2=140\end{equation}

    \begin{equation*}(x+2)^2-n^2=144\end{equation}

Factorise (using difference of perfect squares)

    \begin{equation*}(x+2-n)(x+2+n)=144\end{equation}

Find all of the factors of 144

(1,144), (2, 72), (3, 48), (4, 36), (6, 24), (8, 18), (9, 16), (12, 12)

First pair,

    \begin{equation*}x+2-n=1 \tag {1} \end{equation}

    \begin{equation*}x+2+n=144 \tag {2} \end{equation}

2x=141

x must be an integer.

I then used a spreadsheet

Solved for the x values.

Hence the integers that make (x-10)(x+14) are perfect square are, 10, 11, 13, 18, and 35.

Let’s try another one,

(x-6)(x+14)

(2)   \begin{equation*}(x-6)(x+14)=n^2\end{equation*}

    \begin{equation*}(x^2+8x-84=n^2\end{equation}

    \begin{equation*}(x+4)^2-n^2=100\end{equation}

    \begin{equation*}(x+4-n)(x+4+n)=100\end{equation}

Factors of 100,

(1, 100), (2, 50), (4, 25), (5, 20), (10, 10)

So the possible integers are 6 and 22.

Leave a Comment

Filed under Algebra, Arithmetic, Divisibility, Interesting Mathematics, Puzzles, Quadratic, Solving Equations

Combinations Proof

Prove \begin{pmatrix}n+1\\r\end{pmatrix}=\begin{pmatrix}n\\r-1\end{pmatrix}+\begin{pmatrix}n\\r\end{pmatrix}

Let’s start with the right hand side.

RHS=\begin{pmatrix}n\\r-1\end{pmatrix}+\begin{pmatrix}n\\r\end{pmatrix}

RHS=\frac{n!}{(n-(r-1))!(r-1)!}+\frac{n!}{(n-r)!r!}

Simplify

RHS=\frac{n!}{(n+1-r)!}+\frac{n!}{(n-r)!r!}

There is a common denominator of (n+1-r)!r!

RHS=\frac{n!}{(n+1-r)!}\times \frac{r}{r}+\frac{n!}{(n-r)!r!}\times \frac{n+1-r}{n+1-r}

RHS=\frac{n!r+n!(n+1-r)}{(n+1-r)r!}

RHS=\frac{n!r+(n+1)n!-n!r}{(n+1-r)!r!}

RHS=\frac{(n+1)!}{(n+1-r)!r!}

RHS=\begin{pmatrix}n+1\\r\end{pmatrix}

RHS=LHS

We know this intuitively from Pascal’s triangle

Where each entry is the sum of the two entries above it – for example,

6+4=10

Remember, Pascal’s triangle can be written as combinations,

so \begin{pmatrix}5\\3\end{pmatrix}=\begin{pmatrix}4\\2\end{pmatrix}+\begin{pmatrix}4\\3\end{pmatrix}

Leave a Comment

Filed under Algebra, Counting Techniques, Year 11 Mathematical Methods

Geometry Puzzle

Another puzzle from this book

Two ladders are propped up vertically in a narrow passageway between two vertical buildings. The ends of the ladders are 8 metres and 4 metres above the pavement.
Find the height above the ground, T,

\Delta ABC \sim \Delta TEC and \Delta DCB \sim  \Delta TEB (Angle Angle Similarity)

Hence,

(1)   \begin{equation*}\frac{h}{8}=\frac{x}{x+y}\end{equation*}

(2)   \begin{equation*}\frac{h}{4}=\frac{y}{x+y}\end{equation*}

From equation 1 h=\frac{8x}{x+y} and from 2 h=\frac{4y}{x+y}

Hence, \frac{8x}{x+y}=\frac{4y}{x+y}

Therefore, 8x=4y and y=2x

From equation 1

    \begin{equation*}h=\frac{8x}{3x}=\frac{8}{3}\end{equation}

Hence T is 2 \frac{2}{3}m above the ground.

Leave a Comment

Filed under Geometry, Puzzles, Similarity, Simplifying fractions, Solving Equations