Factorising Non-Monic Quadratics

The general equation of a quadratic is ax^2+bx+c

Let’s explore different methods of factorising a non-monic quadratic (the a term is not 1)

Factorise 6x^2+x-12

We need to find two numbers that add to 1 and multiply to -72 (i.e. add to b and multiply to a\times c)

The two numbers are 9 and -8

Method 1 – Splitting the middle term

This is the method I teach the most often

    \begin{equation*}6x^2+x-12\end{equation}

Split the middle term (the b term) into the two numbers

    \begin{equation*}6x^2-8x+9x-12\end{equation}

The order doesn’t matter.

Find a common factor for the first term terms, and then for the last two terms.

    \begin{equation*}2x(3x-4)+3(3x-4)\end{equation}

There is a common factor of (3x-4), factor it out.

    \begin{equation*}(3x-4)(2x+3)\end{equation}

Method two – Fraction

    \begin{equation*}6x^2+x-12\end{equation}

Put 6x into both factors and divide by 6

    \begin{equation*}\frac{(6x-8)(6x+9)}{6}\end{equation}

Factorise

    \begin{equation*}\frac{2(3x-4)3(2x+3)}{6}\end{equation}

    \begin{equation*}\frac{6(3x-4)(2x+3)}{6}\end{equation}

    \begin{equation*}(3x-4)(2x+3)\end{equation}

Method 3 – Monic to non-monic

    \begin{equation*}y=6x^2+x-12\end{equation}

Multiply both sides of the equation by a

    \begin{equation*}6y=6(6x^2+x-12)\end{equation}

    \begin{equation*}6y=6^2x^2+6x-72\end{equation}

    \begin{equation*}6y=(6x)^2+6x-72\end{equation}

Let A=6x

    \begin{equation*}6y=A^2+A-72\end{equation}

Factorise

    \begin{equation*}6y=(A+9)(A-8)\end{equation}

Replace the A with 6x

    \begin{equation*}6y=(6x+9)(6x-8)\end{equation}

    \begin{equation*}6y=3(2x+3)2(3x-4)\end{equation}

    \begin{equation*}6y=6(2x+3)(3x-4)\end{equation}

    \begin{equation*}y=(2x+3)(3x-4)\end{equation}

Method 4 – Cross Method

    \begin{equation*}6x^2+x-12\end{equation}

Place the two numbers in the cross

Place the two numbers that add to 1 and multiply to -72 in the other parts of the cross.

Divide these two numbers by 6 (i.e a)

Simplify

Hence,

    \begin{equation*}(x-\frac{4}{3})(x+\frac{3}{2})\end{equation}

Which is

    \begin{equation*}(3x-4)(2x+3)\end{equation}

Method 5 – By Inspection

This is my least favourite method – although students get better with practice

    \begin{equation*}6x^2+x-12\end{equation}

The factors of a are 1, 2, 3, and 6 and the factors of 12 are 1, 2, 3, 4, 6, 12

We know one number is positive and one number negative.

Which give us all of these possibilities

Possible factorisationsb term of expansion
(x-1)(6x+12)12x-6x=6xNo
(x-2)(6x+6)6x-12x=-6xNo
(x-3)(6x+4)4x-18x-14xNo
(2x-1)(3x+12)24x-3x=21xNo
(2x-2)(3x+6)12x-6x=6xNo
(2x-3)(3x+4)8x-9x=-1xAlmost, switch the signs
(2x+3)((3x-4)-8x+9x=1xYes

    \begin{equation*}(2x+3)(3x-4)\end{equation}

With a bit of practice you don’t need to check all of the possibilties, but I find students struggle with this method.

Method 6 – Grid

    \begin{equation*}6x^2+x-12\end{equation}

Create a grid like the one below

6x^2
-12

Find the two numbers that multiply to -72 and add to 1 and place them in the other grid spots (see below)

6x^2-8x
9x-12

Find the HCF (highest common factor) of each row and put in the first column.

Row 1 HCF=2x, Row 2 HCF=3

2x6x^2-8x
39x-12

For the columns, calculate what is required to multiple the HCF to get the table entry.

For example, what do you need to multiple 2x and 3 by to get 6x^2 and 9x? In this case it is 3x. It’s always going to be the same thing, so just use one value to calculate it,

3x-4
2x6x^2-8x
39x-12

The factors are column 1 and row 1
(2x+3)(3x-4)

The two methods I use the most are splitting the middle term, and the cross method, but I can see value in the grid method.

Leave a Comment

Filed under Algebra, Factorising, Factorising, Polynomials, Quadratic, Quadratics

Leave a Reply

Your email address will not be published. Required fields are marked *