Polynomial Long Division

When you are required to factorise or solve a polynomial equation with a degree greater than two, you need to use polynomial division (or synthetic division).

For example,

Factorise
$$x^3 + 2x^2 - x - 2$$
.

Find a linear factor. Remember from the Factor and Remainder theorem, if an *x* value is a root, then the function value is zero. The roots will be factors of the constant term (or if non-monic of the product of the leading coefficient and the constant – see example two below)

$$\text{Try } x = 1$$

$$1^3 + 2(1)^2 - 1 - 2 = 0$$

So we know x = 1 is a root and x - 1 is a factor.

Set up the division.

$$(x-1)x^3+2x^2-x-2$$

What do you need to multiply x by to get x^3 ? x^2

$$x^{2}$$

$$(x-1)x^{3} + 2x^{2} - x - 2$$

$$x^{3} - x^{2}$$
Multiply $(x-1)$ by
$$x^{2}$$

Subtract

What do you need to multiply x by to get $3x^2$? 3x

$$x^{2} + 3x$$

$$x - 1)x^{3} + 2x^{2} - x - 2$$

$$x^{3} - x^{2}$$

$$3x^{2} - x$$

$$3x^{2} - 3x$$
Multiply $(x - 1)$ by $3x$

Subtract

$$x^{2} + 3x$$

$$x - 1)x^{3} + 2x^{2} - x - 2$$

$$x^{3} - x^{2}$$

$$3x^{2} - x$$

$$3x^{2} - 3x$$

$$2x - 2$$

$$(3x^{2} - x) - (3x^{2} - 3x) = 2x$$

What do you need to multiply x by to get 2x? 2x

$$x^{2} + 3x + 2$$

$$x - 1)x^{3} + 2x^{2} - x - 2$$

$$x^{3} - x^{2}$$

$$3x^{2} - x$$

$$3x^{2} - 3x$$

$$2x - 2$$

$$2x - 2$$

Subtract

$$\begin{array}{r}
 x^2 + 3x + 2 \\
 x - 1 \overline{\smash{\big)}} x^3 + 2x^2 - x - 2 \\
 x^3 - x^2 \\
 3x^2 - x \\
 3x^2 - 3x \\
 2x - 2 \\
 2x - 2 \\
 0
 \end{array}$$

Factorise $x^2 + 3x + 2$

$$x^2 + 3x + 2 = (x+2)(x+1)$$

Hence
$$x^3 + 2x^2 - x - 2 = (x - 1)(x + 2)(x - 1)$$

Example Two

Solve
$$2x^3 - x^2 - 13x - 6 = 0$$

We need to factorise the cubic and then use the null factor law to solve it.

The roots will be multiples of -12 (2 \times -6), so ± 1 , ± 2 , ± 3 , ± 4 , ± 6 , ± 12 .

Let's try 2

$$2(2)^3 - 2^2 - 13(2) - 6 = 16 - 4 - 26 - 6 = -20$$

Try - 2

$$2(-2)^3 - (-2)^2 - 13(-2) - 6 = -16 - 4 + 26 - 6 = 0$$

Hence, (x + 2) is a factor.

$$2x^{2}-5x-3$$

$$x+2)2x^{3}-x^{2}-13x-6$$

$$2x^{3}+4x^{2}$$

$$-5x^{2}-13x$$

$$-5x^{2}-10x$$

$$-3x-6$$

$$-3x-6$$

$$0$$

$$2x^{2} - 5x - 3 = 2x^{2} - 6x + x - 3$$
$$= 2x(x - 3) + 1(x - 3)$$
$$= (2x + 1)(x - 3)$$

$$2x^3 - x^2 - 13x - 6 = (x + 2)(2x + 1)(x - 3)$$

$$x = -\frac{1}{2}$$
 $x = 3$ $x = -2$